[image: image1.jpg]XML: A Deeper Understanding

By John Shirrell

Table of Contents

11.1 Introduction

1.2 About the format of this book
1
2.1 SGML
3
2.2 Structure
3
2.3 Hierarchy
6
2.4 Chapter Review & Exercises
9
3.1 HTML
12
3.2 Structure
12
3.3 Chapter Review & Exercises
21
4.1 XML
22
4.2 Namespaces
24
4.3 Chapter Review & Exercises
27
5.1 RSS
29
5.2 Podcasting
31
5.3 Chapter Review & Exercises
32
6.1 XHTML
34
6.2 Switching to XHTML
36
6.3 The XHTML MIME Type
39
6.4 Chapter Review & Exercises
40
7.1 DTDs and Schema
42
7.2 Structure
42
7.3 XML Schema
49
7.4 Chapter Review & Exercises
56
8.1 CSS
58
8.2 Selectors
59
8.3 Properties
61
8.4 CSS Linking
65
8.5 Chapter Review & Exercises
67
9.1 XSL and XSLT
68
9.2 Structure
68
9.3 Other XSL Applications
72
9.4 Chapter Review & Exercises
75
10.1 XML Applications
76
Appendix A References
78

1.1 Introduction

The world of XML is one that, to those who are unfamiliar with XML, may seem like an unexplored phenomenon. What is XML? Is it a programming language? Is it a data structure? Is it a web markup language? You will find as you learn XML that it is none of these things, all of these things, and more besides that.
One thing for sure is that XML is definitely important. Google, Inc. has launched dozens of new sites within the past few years running new applications. If you are reading this, the odds are good that at least once you have used one of these new services from Google. At the heart of Google Maps, one of the better known tools, lies an XML database which delivers map data to the user in real-time. These tools function as well as executable applications running on one’s PC, directly from the web. Some call this movement toward a more powerful web is referred to as Web 2.0, and XML is a huge part of this movement.
Microsoft has also taken note of this change, as has Yahoo. Both have announced new online applications that use XML to be released shortly, so they may compete with Google. Also, after a five-year hiatus, Microsoft is finally updating its Internet Explorer browser to version 7 to include the clamored-for XML feature, RSS syndication. RSS syndication is one of the factors that led to a 25% decline in market share for the Internet Explorer browser in favor of RSS capable competing browsers, such as Mozilla Firefox.
As XML becomes more important to companies, developers who are familiar with XML have become in higher demand. Although there may always be a place somewhere for those who know how to program mainframes and work in DOS, there is a bold progression being made towards the free, standardized, and infinitely expandable format known as Extensible Markup Language. (This is the correct capitalization, but often users will emphasize the aptness of the acronym XML by capitalizing it as eXtensible Markup Language.)
This book will focus on the XML applications which these companies will want most. It would be physically impossible for a one-volume book to cover every use of XML in the world, even without accounting for the research involved. An important thing to note is that for every public format of XML that exists in the industry, there may be several more private or “system” formats that are used in a specific application.

1.2 About the format of this book
As you must have noticed by now, (unless someone has reproduced this book without my permission,) this entire book is available for free on my site, <http://xmlbook.info>. There are many reasons behind this. First of all, the information in this book is formatted to be used in the technology setting of today, and I know that technology can change dramatically over just a couple of years. By the time this book was published, it would be obsolete. Second, today’s student pays an exorbitant price for textbooks, particularly textbooks for computer science and programming language reference. If I were to publish this book in print, for the sake of convenience to those who prefer a hard copy, it would have to be done without diminishing the free online version of the book. Third, internet access is very convenient and an online book can never be lost or stolen from a student. Finally, thanks to the versatile Word document format (hey, even today, there are some things XML does not do right 100% of the time), I have posted a version of this book that can be printed out. Please direct any comments about the book, or about this book’s format, to me at <XML@xmlbook.info>.
2.1 SGML

Without SGML, there would not be any XML. Many XML books devote about two sentences out of the entire book to SGML. However, XML and SGML are so similar, it is necessary to look at SGML to understand where XML came from. The Standardized Generalized Markup Language began the whole movement toward a structured markup language that is human-readable and self-documenting.
SGML is a standardized variant of its original form, which was just Generalized Markup Language (GML). Its creators were Charles Goldfarb, Edward Mosher and Raymond Lorie (last names ending with the letters G, M, and L, respectively). Like so many technologies of old, GML was conceived at IBM for use in law office information systems. In 1969, these three created GML to address a problem with data storage: How to keep one’s data consistent on every platform, without loss of formatting? After all, in those days, there was not the oligopoly of computer brands there is today; there were many different breeds of computer and none played nice with any other. GML was an approach to resolve this issue by tossing arbitrary data structures in favor of a flexible, self-documenting markup language. Eventually, this language grew into SGML, and became an ANSI (American National Standards Institute) standard. Later, the International Organization for Standardization (ISO) adopted SGML as a standard, ISO 8879:1986. You can go to the ISO website and purchase the documentation for this standard for a meager $180.00. Later in this book, when we get to XML, I will talk about free standards: standards that are published and accessible free of charge.
2.2 Structure
The whole point of SGML is for a formatted document to be structured in a hierarchical manner, such that portions of data are contained within elements. These elements do not natively have any meaning; in SGML you give the element a name, and then you decide in your program what you want to do with that element. The set of all the element names and attributes used in an SGML format are known as an SGML vocabulary. For example, let’s say there is a man named Fred, who owns a restaurant, Fred’s Restaurant. Fred wants to update his menu every week. There are three dishes for sale:

· Pepperoni Pizza, $8.99

· Double Cheeseburger, $7.50

· Club Sandwich, $5.00

If Fred’s prices and specials change often, it makes sense to use a computer program to keep track of the menu and print off new ones with the formatting already applied. (Of course, when we get into XML and styling, we can look at some even more exciting possibilities, such as making the menu appear on the web or creating a point-of-sale system with this data!) Now, with an existing format, you might have special characters for bold, italic, large fonts, and copy and paste the data into that format or write a program for manual entry of data. That is not elegant or efficient. However, if you have a text document that is written in SGML, you can represent the data with elements, like so:

	<menu>

 <food>

 <name>Pepperoni Pizza</name>

 <price>8.99</price>

 </food>

 <food>

 <name>Double Cheeseburger</name>

 <price>7.50</price>

 </food>

 <food>

 <name>Club Sandwich</name>

 <price>5.00</price>

 </food>

</menu>

Is this a database you would be willing to update? As you can see, a well designed SGML document is very self explanatory. Documentation is not a standard practice in the world of SGML or any of its children, but it is very important to choose obvious element names. In the example above, you can see that the elements have a start tag and an end tag. Both are enclosed in angle brackets <> to distinguish them from the tag’s contents, the regular character data contained in the element. In SGML the end tag begins with a forward slash character, /, to mark the end of the container. Without the end tag, the element could go on forever. The act of placing an end tag at the end of your element is called closing the tag, or in my book, it is called a good idea. Although SGML and HTML are designed to have exceptions to the rule of end tags, I tend to shy away from them as XML does not have exceptions like that. In XML, every element has a start tag and an end tag.
Just to demonstrate how one might live recklessly without the use of end tags, here is a sample of the same menu being made without end tags, assuming the document has been defined in such a way that the end tags are optional. (I will discuss definitions later.) The root element, menu, must always have an end tag, no matter what. However, if the food element is not defined to have any other food elements nested below it, the parser could assume that once it reaches a new food element, the current one has ended and it may begin the new one. Likewise, if name and price cannot contain themselves or each other, those can be assumed to have ended once a name or price start tag is found. As complicated as all of that explanation is, the change to the code hardly seems worth it:

	<menu>

 <food>

 <name>Pepperoni Pizza
 <price>8.99
 <food>

 <name>Double Cheeseburger
 <price>7.50

 <food>

 <name>Club Sandwich

 <price>5.00

</menu>

If you had to write a program to parse this SGML data and produce a menu, which style would you prefer? Would you rather write a program that stops reading character data when the tag is closed, or would you rather read the next tag, then check all the rules in the definition for the nesting of tags, and determine if you should stop reading character data based on all those rules?

The lesson I hope this teaches you is that end tags are your friend. You must never forget them. There is also the occasional need for a tag which contains no data, but is left empty. An empty tag, according to the intuition of an SGML writer, has no need for an end tag. However, once again, XML requires the end tag even for an empty tag. Since SGML does not specifically prohibit an end tag, you would be doing yourself a favor to include one.

Why would anyone ever use an empty tag? In some cases, information needs to be stored in a document that will never be read in the final production. This makes the most sense in a displayed medium; one who uses XML as a database would probably want all data to be plain character data. However, for Fred’s menu, he might want to place a smiling face next to menu items that are a favorite among customers. Rather than resort to a pitiful-looking emoticon, he can add an empty element to flag these items:

	<menu>

 <food>

 <name>Pepperoni Pizza</name>

 <price>8.99</price>
 <icon smile="yes"></icon>
 </food>

...

The pizza is now flagged. The element name is the first word in the tag, icon. After the space can come one or more attributes, or invisible data that further defines the element. The attribute named smile has a value of yes. Perhaps Fred’s Double Cheeseburger is very spicy, and he needs to designate it with a chili pepper. He can add another attribute to his icon:
	...
 <food>

 <name>Double Cheeseburger</name>

 <price>7.50</price>

 <icon chili="yes"></icon>

 </food>
...

Fred could even have both smile=”yes” and chili=”yes” on his Double Cheeseburger at the same time:

	...
 <icon smile="yes" chili="yes"></icon>

...

There is no limit to the number of attributes. Generally you should always put double-quote marks on the value. First of all, this makes it easier to keep track of the value. Second, it prevents the parser from becoming confused if your value contains spaces. Third, and most importantly, you are required to do it in XML anyway, so get used to it. The good news is XML has a shorthand for empty tags, so you will not have to keep using the </icon> end tag for long. That syntax would be invalid SGML, though, so be patient.

Fred could have omitted the ="yes" portion of the smile and chili attributes. He could have just left them as smile and chili:
	...
 <icon smile chili></icon>

...

This would be valid SGML. SGML allows attributes to be left without values, and instead they are either set or unset depending on whether the attribute is present. These are called minimized attributes. This is another one I will tell you to shy away from, because this is another thing you cannot do in XML. XML requires every attribute to have a value.
It is possible to add comments to an SGML document. This comment syntax is compatible with every SGML descendent in this book, including HTML, XML, and all the derivative document types. A comment looks sort of like a tag, but because of the way it is formed, it can contain other tags without them being processed. To begin a comment tag, you use this syntax: <!--. That’s an explanation point and two dashes at the beginning of the tag. To end a comment, you again use two dashes but not another exclamation point: -->. Here is an example of a comment that might be seen in an SGML file:
	<menu>

 <food>
 <!-- Pepperoni Pizza is reduced to 6.99 week of April 5th -->
 <name>Pepperoni Pizza</name>

 <price>8.99</price>
 <icon smile="yes"></icon>
 </food>

...

Although, as I noted above, SGML is fairly self-documenting, it is sometimes important to include further documentation in the file. For example, someone adding new items to the menu might not know how to add icons. Fred could write a big manual detailing everything about this system, but for a quick update that would consume too much time. Instead, Fred should insert a comment like this:

	<menu>
 <!-- Possible icons are smile="yes” and chili="yes"
 Example: <icon smile="yes" chili="yes">

 Default value for both icons is no, just omit the attribute

 if unwanted.-->
 <food>
...

2.3 Hierarchy
By now, you should be noticing something about the way tags are nested. Until XML, there was not nearly as much emphasis on the nesting of elements—but it was always a part of SGML. As I mentioned in 2.2, all elements in a document form a hierarchy. Any element could be defined to have a parent and a child. (Note: Parents of parents and children of children are not still parents and children. This should be obvious, but they are grandparents and grandchildren.) The root element, the element at the very top of the tree (or bottom, depending on how you look at it), cannot have any parents. Also, the root element cannot have siblings, meaning there can only be one root element and nothing else at the root level in the hierarchy. Other elements could have siblings, either of the same element or other elements.
Some elements will be defined to never have any children. For example, why might someone ever nest another element as a child of an icon? The icon element would probably be defined to have no children. Although it may seem very unlikely, perhaps even ridiculous, as the system is expanded it is always possible that the definition for the element could change to allow a child.
As it might turn out, perhaps many years after implementing and expanding this system, Fred decides he would like for the icon to appear in both his menu and his point-of-sale system. His reason for this change is he would like for new employees taking delivery orders to notify the customer of the spicy items before placing the order. The problem is that the program he uses to produce his print menu takes SVG (Scalable Vector Graphics) format, but his point-of-sale system can only display PNG (Portable Network Graphics) images.
By the way, Scalable Vector Graphics is one of the applications of XML! More information will be provided about SVG later on.

To handle this situation, Fred might add the following children to the icon element:

	...
 <food>

 <name>Double Cheeseburger</name>

 <price>7.50</price>

 <icon chili="yes">

 <posicon file="chili.png">

 <menuicon file="chili.svg">

 </icon>

 </food>
...

Fred’s colleague Angela points out that he should just hard-code the chili images into each respective system, since the picture is the same for every chili. Fred agrees that that would make more sense, but unfortunately, SGML does not have an easy way to handle that—the change would have to be made to the application program. In the XML world, there are two much better ways of handling this situation that will be discussed in this book: Cascading Style Sheets (CSS) and eXtensible Stylesheet Language (XSL). Fred holds off on the icons and starts evaluating the possibility of changing his system over to XML.

Meanwhile, Fred and Angela acquire two other restaurants, and all three have different menus. Fred would like to keep all of his menus in one SGML file. How does he do this? He simply changes the root element menu so its child is not the food element, but instead a new restaurant element.

	<menu>
 <restaurant name="Fred’s Restaurant">
 <food>

 <name>Pepperoni Pizza</name>

 <price>8.99</price>

 </food>

 ...

(Continued)
 </restaurant>

 <restaurant name="Fred’s China Town">
 <food>
 <name>Lunch Buffet</name>
 <price>5.99</price>

 </food>

 ...

 </restaurant>

 <restaurant name="Fred’s Little Italy">
 <food>

 <name>Lasagna</name>

 <price>7.99</price>

 </food>

 ...

 </restaurant>
</menu>

As you can see, the food elements are now the children of restaurants. This makes each food item appear on each restaurant’s menu. By doing it this way, Fred can take delivery orders for all three restaurants using one point-of-sale system accessing one SGML file. If he wanted to do so, he could even write a program to increase the prices of all the menu items at all his restaurants in one sweep. In many cases, it is ideal to have one document contain information spanning multiple entities, as SGML and XML processing can in some cases be faster than file system processing.

When designing a document type in SGML or XML, it is important to think about the relationship between the data items when nesting them. Do not nest one element as a child of another just because it looks nice. For an element to have children, you imply that those child elements could not exist without the parent. For example, the name and price of a food could not exist without that food existing. However, this is not always a valid test. Could the restaurants exist without a menu? Probably not, but does it make sense for them to be children? If Fred had decided to create separate SGML files for each restaurant, he may have decided to make the root element be restaurant and then have either menu or food elements as children. However, if he did the same thing with the one XML file, in other words, had restaurant as the root and menu or food elements as children, that would not make sense. SGML only allows one instance of the root element. In that case, you would have one restaurant with three menus, which is not an accurate representation of the data: Fred owns three restaurants, and each has just one menu. A good way to check to see if your hierarchical relationships make sense is to draw a tree of all the elements in your document.
One way to interpret the system that is implemented in the example above is to say that each restaurant is a part of the menu—the part for that restaurant. Another more accurate way to describe it is that not all parent-child relationships make perfect sense from a logical standpoint, but it makes sense to code it that way. One alternative would be to change the root element to menugroup, then make menu a child of each restaurant. However, if each restaurant has only one menu, this would be wasteful. You would have a restaurant tag and a menu tag for every restaurant. If there were multiple menus for each restaurant, this would be an ideal solution.
After Fred and Angela debate about this matter all night, they compromise and code menugroup as the root element, and restaurant as the child of menugroup. When the day comes that they create separate lunch and dinner menus for a restaurant, they will add menu elements as children of each restaurant. Until then, they just leave food elements as children of restaurants:
	<menugroup>
 <restaurant name="Fred’s Restaurant">
 <food>

 <name>Pepperoni Pizza</name>

 <price>8.99</price>

 </food>

 ...

 </restaurant>

 ...

</menugroup>

It makes the most sense, when designing a system in SGML or XML, to make your root element descriptive of the document, and not any tangible entity in the outside (or inside) world. For example, if you were making an SGML file containing information about a baseball team, you could name your root element team, but this would cause problems just as soon as you decided to cover more than one team. However, if you made your root element teamdoc, a shorthand for team document, you are encapsulating your SGML file containing a team, or teams, in a bubble that will (probably) never get any bigger. It would not make sense to have two teamdocs, because if it is data that could not be possibly be contained in one teamdoc, you would need to create a whole separate SGML file anyway. Under teamdoc you can place any element that belongs in this document: teams, freeagents, commissioners, sponsors, and so on.

2.4 Chapter Review & Exercises
You should now know what an element is. An element has a start tag and end tag. Each tag has angle brackets <> on either side to separate it from text. You should be able to identify the element name, attributes, and values, as well as its contents, parents, and children. You should know that element contents are usually used for printable data, and attributes are used for behind-the-scenes information.

Here are a few exercises you should try to test your understanding of the section:

1.

Design your own SGML system. The application is a list of computer labs at a university. You must make up all of the information; do not use any real information in your assignment. All the information should be fictitious.

For each computer lab, you need to specify all of the following information: Lab building and room number, phone number, directions to the lab, number of computers, software programs available, printers available (black and white or color?), private or public access, and the hours open for all seven days of the week. You must also add one other element of your own choosing. If any default values are invoked by omitting an element or attribute, you must leave a comment noting the default value that is being used.
All possible values must be used for each element, so for example, you must have labs where there is black and white, color, both, or neither kinds of printing available, and you must have a 24-hour lab and a lab that is closed on the weekend. Use attributes, element contents, empty tags, etc. appropriately for the way the data is likely to be handled by an application program.
Remember that the rules for SGML do allow optional end tags and unquoted attribute values, so you may choose to take my advice or not regarding those two things. Also, SGML is not case-sensitive, so you can use capital or lowercase letters for element names and attributes or whatever combination thereof you like.
2.

Pick any element (or two or three) in the below document and identify its element name, start tag, end tag, attributes, attribute values, parents, children, grandparents, grandchildren, siblings, contents, and whether or not it is an empty tag. For hierarchical relationships, you only need to identify element names (multiple times for multiples of the same element name). The document is valid SGML.
	<hotelnetwork>
 <branding code=doz>

 <hotel name="Doz-E Inn Tonville" number=25>

 <location>

 <street>1002 E Hotel St</street>
 <city>Tonville</city>

 <postalcode>48404</postalcode>

 <map id=25 filename="25-doz.png">

 </location>

 <rooms>

 <roomtype single units=25 price=35.99>Queen</roomtype>

 <roomtype king units=10 price=41.99>King</roomtype>

 <roomtype double units=50 price=50.99>Double</roomtype>

 </rooms>

 </hotel>

 <branding code=nit>
 <hotel name="Nite-time Suites Edge Canyon" number=80>
 <location>

 <street>132 Canyon Rd</street>

 <city>Edge Canyon</city>

 <postalcode>25599</postalcode>

 <map id=80 filename="80-nit.png">

 </location>

 <rooms>

 <roomtype kingsuite units=100 price=95.99>King Suite</roomtype>

 <roomtype doublesuite units=100 price=105.99>Double Suite</roomtype>

 <roomtype king units=50 price=55.99>King</roomtype>

 <roomtype double units=50 price=57.99>Double</roomtype>

 </rooms>

 </hotel>

 <hotel name="Nite-time Suites Fairview" number=81>

 <location>

 <street>8820 Fairview Crossing</street>

 <city>Fairview</city>

 <postalcode>25578</postalcode>

 <map id=81 filename="81-nit.png">

 </location>

 <rooms>

 <roomtype kingsuite units=100 price=95.99>King Suite</roomtype>

 <roomtype doublesuite units=100 price=105.99>Double Suite</roomtype>

 <roomtype king units=50 price=55.99>King</roomtype>

 <roomtype double units=50 price=57.99>Double</roomtype>

 </rooms>

(Continued)

 </hotel>

</hotelnetwork>

3.

Draw a tree representing the hierarchy of the above SGML document.
4.

Although the above SGML document breaks many of my style rules for XML preparation, there are a few other problems with the way elements and attributes are laid out. Find ways to improve this document’s structure into a form that makes more sense based on what you learned in this chapter. Remember the rules about printable vs. invisible data and smart hierarchy.
3.1 HTML

HTML is the most well-known application of SGML, and one of the more important markup languages to know today. HTML coding involves a different mode of thinking from SGML, although since many programmers learned HTML before learning SGML or XML, it is the more traditional uses of markup language that seem to be different to the “old fashioned” programmers. HTML was invented in the early 1990s by Tim Berners-Lee in order to make webpages which could link to one another and have a limited amount of formatting applied to the text. He called this concept “HyperText” and this led to the acronym for HTML, which stands for HyperText Markup Language. If you are reading the book online, you are reading this book presented in XHTML, a variant of HTML which will be covered later.
Berners-Lee did not only invent HTML, he also invented HTTP, which stands for HyperText Transfer Protocol, and basically he invented the World Wide Web. He set up the world’s first web server, a NeXTcube system, and proceeded to affix a sticker on the front where he scribbled out: “This machine is a server. DO NOT POWER IT DOWN!!” This image is online at Wikipedia at <http://en.wikipedia.org/wiki/Image:First_Web_Server.jpg> (and if you are reading the HTML version of the book, this appears as a hyperlink, which you can click on and be immediately taken to the destination page). HTML was later standardized by two big names in the standardization of internet protocols: The IETF, or Internet Engineering Task Force, published HTML 2.0 as one of its thousands of RFCs or Requests For Comments, and then in 1994 Berners-Lee founded the World Wide Web Consortium, or W3C for short, who should by the end of this book be very important to you. The W3C are responsible for HTML versions 3 and 4, XML, XHTML, CSS, and pretty much everything else in this book other than SGML.
I will not cover HTML very thoroughly, since there are thousands of books, a great many websites, classes at almost every college and high school, and the W3C standard that can be referenced for further learning. I will only cover enough HTML to facilitate your understanding of SGML a little better. However, after reading this, you should be well equipped to make your very own website, which is a collection of several HTML documents that are posted online.

3.2 Structure
As I stated earlier, HTML is a very different approach from any other use of SGML or, as you will see, XML. Rather than containing a hierarchical structure of data and representing it by relationship, HTML is simply plain text with segments of the text encapsulated in an element to represent visual formatting. This approach is a very different way to look at SGML, but it is perfectly valid. Although it might seem like the order of elements would not inherently matter in SGML, that is not a rule of SGML. Like many other aspects of SGML, whether the order of elements matters depends on the implementation. This will become obvious as we go on, but if the order did not matter for elements in an HTML document, you might have one block of bold text substituted for another. All of the bold keywords in this book would appear in random places, and you might see in the above paragraph, “You should be well equipped to make your very own IETF” instead of website. Obviously in the case of HTML, order does matter, and in fact most web browsers process an HTML document sequentially, rather than looking at the page as a whole. This method allows the browser to begin displaying the page immediately rather than wait for it to download completely.

There are some pitfalls to this approach. By assigning HTML tags a distinct visual meaning, it then becomes difficult to change the visual appearance of a website when there may be dozens or even hundreds of elements that need to be changed. Cascading Style Sheets (chapter 8) can be applied to HTML documents and instruct the browser to change the visual appearance of certain elements, but an even more maintainable approach is to create a webpage using XML and then processing the XML to convert it to HTML when it is accessed by the user. This will be covered in due time, but in order to be able to convert XML to HTML, you must know how to code HTML.
To continue the Fred’s Restaurant application, Fred has decided he would like to post a website containing his menu. Fred does not change his menu very often yet, so he will just use HTML and update his website manually when he does. Fred begins, as any astute web designer would do, by drawing up a visual representation of how he would like his site to look:
	Fred’s Restaurant

Open Monday-Friday 10 AM to 10 PM, Saturday-Sunday 10 AM to 12 Midnight

Menu:

Lunch
Club Sandwich, $5.00
Turkey Sandwich, $4.75
Soup du Jour, $2.00
Soup and Half Sandwich, $4.50
Dinner
Pepperoni Pizza, $8.99
Other toppings, add $0.50
Double Cheeseburger, $7.50
E-mail Fred’s Restaurant

Fred, of course, expects this to be easy, since it is easy to make a document like this in a word processor (except for the e-mail hyperlink, of course). However, he soon realizes, and let’s say this is in the early 90’s when there were no WYSIWYG (What You See Is What You Get) HTML editors, that this is actually a fairly complicated webpage to put together. However, it will benefit Fred greatly to learn HTML, since he may one day decide to integrate his point-of-sale and menu printing systems with the website and have the HTML generated automatically, which cannot be done with WYSIWYG editors.

The HTML document is a SGML document, and as such it must follow SGML conventions. There are a few that I did not mention in chapter 1, but now that you understand the mechanics of SGML, you can learn a small technical detail about SGML. Every SGML document should have a Document Type Declaration (DTD), and the same is true for XML. Is it absolutely necessary that you include one? Usually, the answer is no. Most web browsers assume that any webpage is going to be HTML, and that any RSS stream that is referenced will be in RSS format. Also, very few end-user applications actually check the document against the DTD you supply, as that would be time-consuming. Instead, the browser uses its internal rules for handling the document, which is all it would be able to process anyway. But just to be a good sport, Fred is going to include the DOCTYPE tag and avoid a warning from the W3C Validator (which will be discussed later):
	<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

The DOCTYPE tag is not an element, so rules that apply to elements are not closed. The DOCTYPE tag is never closed. There are no attributes, only values whose meaning is defined by their order in the tag. The first value, html, is the root element. In case-sensitive markup languages, like XML, it must be capitalized the same way as the actual root element. Since HTML is a subset of SGML, you can mix capitalization and it won’t matter. As a side note, all my HTML examples will be in lowercase to be consistent with XHTML and XML conventions. However, I generally prefer uppercase HTML tags to help them stand out from character data when working with regular HTML.

The PUBLIC defines the usage of the markup language you are using. If this were an XML language you designed by yourself for use inside a system, you would use SYSTEM in place of PUBLIC. Any W3C standard is of course going to be PUBLIC. The next item in the tag is a big quoted item that describes the standard being used. This standard definition is a sort of list that is delimited by two forward slashes. The first item in the list is a minus sign. The next item is the organization that created the standard, W3C. If the standard was created by an ISO registered organization, the minus that came before would be a plus instead. Minus means that the organization is not ISO registered, and the W3C is not.
The next item is the document type in use. The first word is always DTD for any document that uses a DTD file, and all the standards in this book do. After that comes the name of the standard. HTML 4.01 Transitional is a document type that allows for all the old tags we love to use so much, to make text underlined or centered, for example. The HTML 4.01 (also known as Strict) document type was created by the W3C to forbid the use of those tags, because they are deprecated or basically obsolete. Although Cascading Style Sheets are a valid alternative to using an underline element, for a small webpage it can be monstrously inconvenient when the deprecated element for an underline is simply <u>Underline</u>. The u element is much easier, and the Transitional document type allows it to be used. After that comes the EN, which means the tags are written in English. The next item is a quoted URL (Uniform Resource Locator, basically a web address to a resource) to a DTD file containing all of the formatting rules.
This is an important note about DOCTYPE tags in HTML: Since the meaning of certain tags has changed from past versions of HTML, version 5 and higher browsers test the DOCTYPE tag to choose how to handle the page. Often the way it works is, if no DOCTYPE tag is present, or if a Transitional DOCTYPE tag is present but missing the DTD file URL, the page is rendered by the browser in quirks mode, and all of the new features of HTML and CSS that are seen by the browser developers as a conflict are turned off for compatibility. To turn them back on, give either a Strict DOCTYPE tag (with or without the URL), or a Transitional DOCTYPE with the URL. Your page will then be rendered in standards mode. These sort of arbitrary ways that browsers look at your HTML are a solid reminder that when publishing an HTML document online, it is important to test in many different browsers to make sure they are being displayed the way you intended.

Next comes the root element of the HTML document, which is, simply enough, html:
	<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

</html>

HTML documents have two main parts: The header and the body. Each can only exist once. The header contains information about the document to identify and describe it, including the title and some metadata about the document. The header can also be used to include JavaScript or Cascading Style Sheets, or to link RSS documents. Basically, the header is where anything that can’t be seen is placed. The body contains character data and elements that add special formatting to text or insert images.
	<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <title>Fred’s Restaurant</title>

 </head>

 <body>

 <center>

 <h1>Fred’s Restaurant</h1>

 Open Monday-Friday 10 AM to 10 PM, Saturday-Sunday 10 AM to 12 Midnight
 </center>

 <h3>Menu:</h3>

 <u>Lunch</u>

 Club Sandwich, $5.00

 Turkey Sandwich, $4.75

 Soup du Jour, $2.00

 Soup and Half Sandwich, $4.50

 <u>Dinner</u>

 Pepperoni Pizza, $8.99

 Other toppings, add $0.50

 Double Cheeseburger, $7.50

 E-mail Fred’s Restaurant
 </body>

</html>

The head element contains the header, and the body element contains the body. Let’s review the other new tags.

· title – Gives the document a title. This appears in search engines and the browser’s title bar.

· h1 and h3 – Header text. The browser usually draws this as big, bold text. The tags range from h1 to h6, h1 being the largest, h6 being the smallest. For quick and dirty webpages, it is convenient to use this element, but the exact size and formatting is left completely to the browser’s discretion. In chapter 8 I will show you how to use Cascading Style Sheets to give the browser more specific formatting instructions.
· center – Center alignment for text and images. The default, without this tag, would be left alignment. This is a deprecated element; W3C recommends using <div align="center"> instead. The align attribute also accepts left, right, and justify, giving you a few more alignment options. I will explain the div element later.
· u, b, i, s – These one-letter elements represent Underline, Bold, Italic, and Strikethrough, respectively. I only used two of those, but I’m listing them all because they are so simple.
· br – This one is tricky. br represents a line break in the final formatted document. It will send following text to the next line. Line breaks in your code do not display as line breaks in the final document! In HTML, as in any SGML or XML, line breaks are treated as whitespace (in other words, space characters). Don’t worry about having multiple spaces appear in your final document if you have a lot of line breaks in your code, because the browser will convert all whitespace into just one space character when it is rendered.
Also note that br is one of those empty elements I warned you about in chapter 2. I did not close them, however, because the W3C forbids an end tag, and in fact when I tried closing a br element, the browser treated both the start and end tags as two separate brs. However, if it makes you uncomfortable to leave a tag empty, you may use the XML notation for an empty tag:
. By adding a slash at the end of the start tag, it becomes a self-closing tag, which is something I will discuss in chapter 4. It is very important that you include a space before the forward slash, because if you do not, the browser will think the element name is br/ instead of br and ignore it.
As a side note, many HTML authors have developed a bad habit of using the p or paragraph element as a double line break. While the p element does insert two line breaks, it is also a block-level container which means that the end tag is required. The W3C specification technically leaves the end tag as optional, but discourages this use of p as well. I will explain the proper use of the p element shortly. That’s two block-level containers that I owe you an explanation about, p and div. You will note that in Fred’s example, a double line break is formed using two br elements.
· a – I’ve saved the best for last. The a element is used to format hyperlinks, which are one of HTML’s key features. The letter a stands for anchor, which is a rather confusing mnemonic for a hyperlink. This is the only element in this document that has an attribute, because an anchor without an attribute would be nothing. The href attribute is a hypertext reference, which can contain any URL. In this case it is set to "mailto:freds@restaurant.net", which is a type of URL. The mailto: is a scheme (not a protocol, since there is no such protocol as mailto), which directs your web browser to open your e-mail program and start a new e-mail to the e-mail address that follows. A scheme is at the beginning of a URL followed by a colon, and most web browsers will assume you mean http if you do not specify a scheme. A protocol is a standardized method of transmitting data over the internet. Protocols are a kind of scheme, for example, http or ftp (File Transfer Protocol) are schemes and they are also protocols, but mailto is not a protocol because it does not involve any network communication. It is an instruction for your web browser to follow. The href attribute could instead contain a link to another website beginning with http://. The character data contained in the a element appears to the user as underlined text that, when clicked, will take the user to the resource referenced by the href attribute.
Fred has not yet completed his webpage. Currently his page is very drab and disorganized because all of the menu items are flush with the left side of the page:

	Fred’s Restaurant

Open Monday-Friday 10 AM to 10 PM, Saturday-Sunday 10 AM to 12 Midnight

Menu:

Lunch

Club Sandwich, $5.00
Turkey Sandwich, $4.75
Soup du Jour, $2.00
Soup and Half Sandwich, $4.50
Dinner

Pepperoni Pizza, $8.99
Other toppings, add $0.50
Double Cheeseburger, $7.50
E-mail Fred’s Restaurant

To achieve the effect he was looking for, Fred must add a table to his document. I will remove the menu items from this example for simplicity:

	...

 <table align="center" border="1">

 <tr>

 <td colspan="2">

 <center><h3>Menu:</h3></center>
 </td>

 </tr>

 <tr>

 <td>
 <u>Lunch</u>

 ...

 </td>

 <td>

 <u>Dinner</u>

 ...

 </td>
 </tr>

 </table>
...

This will result in the effect Fred desired, by splitting the menu into lunch on the left and dinner on the right, with a Menu header topping both columns:

	Menu:

Lunch

Club Sandwich, $5.00
Turkey Sandwich, $4.75
Soup du Jour, $2.00
Soup and Half Sandwich, $4.50
Dinner

Pepperoni Pizza, $8.99
Other toppings, add $0.50
Double Cheeseburger, $7.50

How was this accomplished? First, there was the table element which contains the entire table. Within every table is a set of table rows represented by the td element, and within every set of table rows is a set of table data cells. The reason it is td and not simply tc is because there are also th, or table header cells. Table header cells are better used in traditional spreadsheet-style tables, and they are usually styled differently by the browser (commonly bold text). The W3C directs HTML developers to just use td in the absence of headers. This is one of the few good examples of nesting in HTML.
Table cells may contain column span or row span attributes, which are colspan and rowspan, respectively. Just in case you are not familiar with spreadsheet terminology, columns are vertical and rows are horizontal. To remember, think of columns in a fancy courthouse holding up the ceiling that go from top to bottom, and think of rows of crops in a field that go from side to side. The top cell in Fred’s table occupies two columns, so it has a column span of 2, coded as colspan="2".

Finally, Fred really wants his e-mail link to be right justified. This is where a block-level container is used. A block-level container basically puts the contents into a box, stopping it from flowing with the rest of the document. You can move the box around, you can draw borders on it, you can align the text inside it, you can change the style of text inside it, and many other things. The only thing you cannot do with a block-level container is make it flow, since that is the opposite of the definition of a block-level container (HTML has an inline container, the span element).
Here I am keeping my promise to explain p and div. The p element is a block-level container that contains a paragraph of text, and the div element is a block-level container that contains anything else. Technically they behave in the same way, but it is easier to keep organized if you use p for paragraphs only. To move Fred’s e-mail to the right side of the page, it is placed in a block-level container and that container is then right-aligned:
	...

 <div align="right">
 E-mail Fred’s Restaurant

 </div>

 </body>

</html>

Fred’s website now looks as he initially planned, but the header is still very boring. Fred could draw up his own logo and insert it in place of the header text. To do this, he would upload the image to his web server in the same directory as his HTML document. He would then place a relative URL, which is a URL of a document in relation to the current document, into an img element:

	...

 <center>

 Open Monday-Friday 10 AM to 10 PM, Saturday-Sunday 10 AM to 12 Midnight
 </center>

...

The img element has two attributes that are required. The first, src, is the source of the image given as a URL. Why isn’t src used for hyperlinks? Because a hyperlink isn’t a source, it is a reference to a destination, the shorthand for hypertext reference which is href. Do not mix the two up. If you are a C++ programmer, consider the difference between pointers and includes. Later in the book, we will be using the link element, which also uses href. This may seem confusing, since the link element appears to be more similar to an include than a pointer. link is used to open an external resource, such as a CSS file, an RSS feed, or something else like that to enhance the document. However, that external resource is not pulled into the document, it stays out in that external file where it existed from the beginning. The browser goes out to look at it and comes back to the HTML document empty-handed.
The second attribute for the img element, alt, specifies alternate text to display in case the image does not load. This is the case for screen readers for the blind, which do not load images. This is also the case for search engines. Neither of those can understand images, so you must duplicate any text that appears in the image in the alt attribute. Also, this is another empty tag, so you may convert this into a self-closing tag if you would prefer. Make sure there is a space between the last attribute and the forward slash. Just like with br, end tags are forbidden by the HTML specification.

The final source code for Fred’s site would look like this:

	<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <title>Fred’s Restaurant</title>

 </head>

 <body>

 <center>

 Open Monday-Friday 10 AM to 10 PM, Saturday-Sunday 10 AM to 12 Midnight
 </center>

 <table align="center" border="1">

 <tr>

 <td colspan="2">

 <h3>Menu:</h3>

 </td>

 </tr>

 <tr>

 <td>
 <u>Lunch</u>

 Club Sandwich, $5.00

 Turkey Sandwich, $4.75

 Soup du Jour, $2.00

 Soup and Half Sandwich, $4.50
 </td>

 <td>

 <u>Dinner</u>

 Pepperoni Pizza, $8.99

 Other toppings, add $0.50

 Double Cheeseburger, $7.50
 </td>
 </tr>

 </table>
 <div align="right">
 E-mail Fred’s Restaurant

 </div>

 </body>

</html>

You might be wondering, what if I want to make an HTML page to demonstrate HTML? Is it possible to escape characters in HTML documents so they are not processed? The answer is yes, and it is done with a nice feature of SGML called entities. Entities are aliases delimited by an ampersand and followed by a semicolon that are replaced with a document-specified string. Later on you will learn how to make your own entities. The entities you would need to escape HTML characters is < for the less-than sign, > for the greater-than sign, and " for the double-quote mark. A full list of entities can be found at the Visibone site <http://www.visibone.com/htmlref/char/ceralpha.htm>.
As a final note for this chapter, I know you may be wondering if it is possible to change fonts, colors, widths, heights, and those things. I could tell you the old way to do it in HTML, but I will consciously leave that information out. Those methods are very cumbersome and unpredictable compared with the CSS method, which will be covered in chapter 8. If you really want to use the HTML methods to change the appearance of a document, you can look them up in the HTML specification at the W3C site <http://www.w3.org/TR/html401/>.
3.3 Chapter Review & Exercises
You should now know what HTML and HTTP are, and what purpose they were designed to serve. You now know who IETF and W3C are, and their roles in the development of HTML. You need to know how to form the header section and body section, and how to make header text, format text in bold/underline/etc., align text using a block, and make tables. You should understand entities, and know the difference between src and href and when to use them.
1.

Determine if the schemes provided below are protocols or just schemes. Note: Using Google to find the answer is a bad idea, as many sites erroneously list all of these schemes as protocols. However, using it to research the scheme may help you decide whether it is a protocol or not.
1. telnet:

2. view-source:

3. javascript:

4. irc:
5. aim:

6. nntp:

7. news:

2.

Create a webpage using the information you have learned in chapters 2 and 3. Follow SGML and HTML rules. If you are unsure about something, check the rules at the W3C website <http://www.w3.org/TR/html401/>. Use all the elements used in the Fred’s Restaurant example website at least once. Test your webpage in a web browser, and then use the W3C Validator <http://validator.w3.org/> to check your work. As long as you follow the HTML specification you indicate on your Document Type Declaration, you should be able to pass the validation step.
3.

Change the HTML document from step 2 to contain invalid HTML code that causes the page to fail W3C Validation. (Be careful, because as a subset of SGML, many end tags are considered optional!) Write a response explaining why the change was invalid HTML.

4.1 XML

Finally, you have reached the meat and potatoes of this book: XML. Although SGML and HTML had the potential to be very useful, there were some limitations that drove XML to be produced as a W3C Recommendation. A recommendation is a specification that the W3C recommends developers treat as a standard, but lacks any specific authority to do so (by contrast with ANSI and ISO). The standards produced by W3C may not be accredited in as large a scale as standards from those organizations, which is why the term recommendation is used, but the W3C standards are much more widely accepted and implemented.
One of the reasons why these recommendations are so pervasive is because they are completely free. They can be accessed from the W3C website <http://www.w3.org/> free of charge 24 hours a day, in stark contrast with the SGML ISO standard which you must purchase for $180. These free standards are compatible with open-source software, such as the browser Mozilla Firefox, which parses XML. Although Mozilla Firefox uses its own public license, many other programs use the GNU public license, including operating systems that use the Linux kernel. Public licenses are licenses that require that software be open source, and that any modifications or enhancements to the software must continue to be open source. Technologies that cost money to obtain are at odds with this philosophy, since the code is proprietary and may not be released together with an open-source program. One example of this is the LZW algorithm used in the GIF (Graphics Interchange Format) file format. GIF images are a popular format on the internet due to their small file size, but they could not be processed by open-source software unless a separate binary plug-in was loaded. To get around this, W3C released another standard for the PNG (Portable Network Graphics) file format, which is smaller, has more features, and is more efficient than the GIF format. The same is true of XML: It is less cumbersome than SGML, and much better geared toward use on the internet.
XML was developed under the W3C in 1996 with a list of ten particular goals for the project. Those goals were as follows:
1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.
These goals, the XML Working Group asserted, were not met by SGML. They then proceeded to release the first, and soon after, version 1.1 of the XML Recommendation. That recommendation is now online at <http://www.w3.org/TR/xml11/>.
Why did I cover SGML and HTML first? Basically, you already know XML. Because XML is a subset of SGML, much of the syntax is the same. The main purpose of XML was to streamline SGML and remove little-used parts of the specification and focus on the main uses of SGML that would benefit the internet. However, since XML is a validated format, in accordance with the goal to make XML easier to process, more error handling is done automatically and you must now follow XML syntax rules. As long as you do that, you can create XML vocabularies, or sets of elements and attributes, as freely as you would like.
There are a few main rules that are important to remember when formatting XML. These go in addition to the SGML rules you already know, such as having only one root element and nesting elements within each other properly. You must also observe these new rules, many of which I warned you about in chapter 2:
· All elements must have a start tag and end tag. You may use a self-closing tag, which I gave a sneak preview of in chapter 3, by adding a space and forward slash at the end of the tag like this:

· All attributes must have values, minimized attributes are not allowed. All previously minimized attributes must now be specified as attribute="attribute".

· All attribute values must be contained in quote marks. Either double or single quotes may be used, but double quotes are easier to track.

· Element and attribute names are case sensitive; name is different from Name and NAME. For XML it is often best to stick to lowercase letters.
· There must be an XML declaration. I will go over this shortly.
These rules make it much easier for programs to parse the resulting document, since they do not have to worry about as much error-trapping to catch malformed syntax. Ready-made XML processors will catch that before the program accesses the data. If an XML document follows these rules, it is said to be well-formed. Well-formed XML is so much easier to process that it can be processed by portable devices that could not handle SGML or HTML. A great example of this is WML – Wireless Markup Language, which is the portable device equivalent of HTML. As PDAs and mobile phones become more powerful, they are beginning to support HTML or at least a version of XHTML, however many devices use the WML vocabulary because its strict XML syntax is much easier to process.
The XML declaration tag comes before the DOCTYPE tag. It is very similar in its design, although this one uses real attribute and value pairs unlike the funky DOCTYPE tag:

	<?xml version="1.1" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

The <?xml ?> syntax is a processing instruction—it sends a command to a parser somewhere along the line to handle it. It is not rendered by a browser. Processing instructions are a feature that came from SGML, and they are also used in the processing of PHP (Personal Home Page HyperText Preprocessor, or PHP: HyperText Preprocessor) commands. The PHP language begins parsing commands where it sees a processing instruction formatted as <?php ?>. Contained within the tag are the processing directives, and in the case of the XML declaration tag, there are two that should be present: A version, reflecting the XML version the document uses, and a character encoding. Both need to be quoted, just like you should be doing for all your attribute values now.

XML also has a number of tools available to make any XML document more powerful. Anyone wanting to create his own XML vocabulary could expect it to be adopted much more easily than a SGML vocabulary. In the chapters that follow, you will learn about Cascading Style Sheets (for styling), Extensible Stylesheet Language (XSL) and XSL Transformations, and Document Type Definition files for extended validation. You can use tools that are widely available to process your XML documents and convert them to other XML formats, or convert them to HTML, or for that matter any other sequential file format.
4.2 Namespaces
One handy feature of XML is that XML documents can be embedded within other XML documents. For example, if you have an XHTML webpage, and you want to include a Scalable Vector Graphics image, you can just embed the image within the same XHTML document, and have one XML file containing two different formats of XML. However, with this convenience come complications. What if your SVG has a title element inside it? Is this an HTML title element or an SVG title element?
To solve this problem, the W3C created the XML namespace. An XML namespace ties each element name to one unique XML implementation. For example, let’s say you have this document:

	<?xml version="1.1" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

 <head>

 <title>Linked Image</title>

 </head>

 <body>

 </body>

</html>

Note the mandatory self-closing img tag. This method of loading an SVG image is fine; however, as small as the document is, maybe it would be worth the trouble to embed the SVG image within the document. To do so, you could simply copy the root element of the SVG image in place of the img element:
	...
 <svg version="1.1" xmlns="http://www.w3.org/2000/svg" ...>

 <title>My SVG Image</title>

 <rect ... />

 ...

 </svg>
...

Does the browser confuse the title element in the SVG code with the title element in the XHTML code? The answer is no. The xmlns attribute is an XML namespace which is a string of characters that uniquely identifies this XML vocabulary. The SVG vocabulary is uniquely identified by the URL to the W3C site, which if opened, says “This is an XML namespace...” The svg element has a namespace applied to it, and that namespace affects all child elements. This is called namespace defaulting. Therefore, the title element that is a child of the svg element is treated as SVG code.

The namespace does not have to be a URL. It could be your full name, or it could be a bunch of letters you get when you pound the keyboard. The problem rises when someone else defines a namespace, and they have the same full name, or they hit the same keys with their fist. Suddenly you have a duplicate namespace, and there is no way to determine which came first or which is correct. By using a URL to a website you control, you can post your own XML specification there and be sure that the URL uniquely identifies your XML code.

Namespace defaulting becomes a problem when you have a document with 100 SVG images embedded. Although the argument could be made that you should not embed so many SVG images directly in your XML, if you ever did encounter such a situation, you need to know how to handle it. It would be ridiculous to put the namespace URL on every single svg element. Instead of doing that, you can add a namespace prefix to an element to associate it with a namespace. The resulting syntax is known as a qualified name (abbreviated QName), which is the combination of prefix and element name (the element name is also known as the local part). To define a namespace for a prefix, add a colon followed by the prefix name you want to use:
	...

 <svg:svg version="1.1" xmlns:svg="http://www.w3.org/2000/svg" ...>

 <svg:title>My SVG Image</svg:title>

 <svg:rect ... />

 ...

 </svg:svg>
...

Notice how I also have added the prefix, plus a colon, to all the SVG-related tags. These tags are now explicitly bound to that namespace. However, the scope of the namespace ends at the end of the svg element on which it was defined, so in the following example, the second svg would not be bound even though the prefix is there:
	BAD EXAMPLE

...
 <svg:svg version="1.1" xmlns:svg="http://www.w3.org/2000/svg" ...>

 <svg:title>My SVG Image</svg:title>

 ...

 </svg:svg>
 <svg:svg version="1.1" ...>

 <svg:title>Error! This title is not in the correct namespace.</svg:title>

 ...

 </svg:svg>

...

If your XML parser is paying attention, it should alert you to either an undefined namespace or an undefined element name upon reaching the second svg element. To fix this problem, simply define the xmlns attribute in the html start tag. Not to worry, it will not change the scope of any of the HTML elements, since they do not have the svg: prefix.

	...

 <html xmlns:svg="http://www.w3.org/2000/svg" ...>

...

There is also the possibility that your document might be imported into another XML document. Would its elements then be confused for the parent document’s elements? It is completely possible, so to prevent this from happening you should define your own namespace. Just make up a URL that you control, and default the namespace for your document. In the XHTML example I gave, you would do this:
	...

 <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" ...>

...

The namespace for your document is now, by default, XHTML. However, any elements prefixed with svg: will be treated as SVG. Now there is no excuse for an XML parser to be confused.

Things get tricky when you look at the attributes, however. In the case of namespace defaulting, attributes are treated as having the same namespace as the default. However, in the case of prefixing, attribute names do not inherit the namespace from the element (as I know you were all thinking until I said that).
	BAD EXAMPLE

...

 <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" ...>

...
 <svg:svg version="1.1" ...>

 <svg:title>My SVG Image</svg:title>

 <svg:rect x="1cm" ...>
 </svg:svg>
 <svg:svg version="1.1" ...>

 <svg:title>My Other SVG Image</svg:title>

 ...

 </svg:svg>

...

In the above example, I should first point out that all the elements prefixed with svg: are now associated with the SVG namespace. Good job! However, the x attribute in the rect element is still defaulted to the XHTML namespace, wherein there is no such attribute and the document fails validation. The same problem exists for the version attributes. There are two ways to fix this: Either go back to defaulting the namespace for each svg element, or add the svg: prefix to each x attribute. The latter is a better choice:
	...

 <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" ...>

...
 <svg:svg svg:version="1.1" ...>

 <svg:title>My SVG Image</svg:title>

 <svg:rect svg:x="1cm" ...>
(Continued)
 </svg:svg>
 <svg:svg svg:version="1.1" ...>

 <svg:title>My Other SVG Image</svg:title>

 ...

 </svg:svg>

...

You now have a document that is free of ambiguity. Because of this, there is absolutely no excuse to use foolish names to try to be unique. Choose element names like name and address, not QBGCustName and QBGCustAddr. Never forget that one of the goals of XML is for it to be human-legible. You can also still use the same kind of comment tags you used in SGML in your documents where necessary. Also, all the design suggestions from SGML still apply: Make sure your elements’ parent-child relationships make sense. Use attributes for behind-the-scenes data, and use character data for visible text. Make your XML so obvious to understand that it becomes second nature to maintain your XML documents.
Also, to close off the chapter, when working in XML, you can check your work in Internet Explorer or Mozilla Firefox. Both include a default XSLT stylesheet that will display your XML document in pretty-print format. As an added benefit, both browsers will check your XML code to ensure that it is well-formed, and if there are any syntax errors, you will be alerted to them. Note, however, that the browser will not catch logic errors in a well-formed document. For example, if your XML vocabulary requires that element a be a child of element b, but you accidentally make element a a sibling of element b, the document is still well-formed. You can test for proper use of your XML vocabulary when DTDs are introduced in chapter 7. Also, your browser may have trouble parsing an XML 1.1 document, so change the version to XML 1.0 if necessary.
4.3 Chapter Review & Exercises
You have learned in this chapter why XML was created, and why it has surpassed SGML in its popularity. You know what you need to do to produce a well-formed document, and how to define namespaces. You also should understand how embedding works. You should know what a vocabulary is, and you should understand the syntax for self-closing tags.

1.

Fred is converting his system from SGML to XML, and has discovered that some sloppy person has discovered just how much SGML let him get away with when revising the code. The current menu is not even close to being well-formed, can you fix it without changing any of the new information? The result must be valid XML. Hint: You will need to add a Document Type Declaration and XML declaration. You may consider this to be a system file.
	<menugroup>

 <restaurant name="Fred’s Restaurant" ID="FREDS">

 <menu LUNCH>

 <food>

 <name>Club Sandwich</name>

 <price>5.00</price>

 </food>

 <FOOD>

 <NAME>Turkey Sandwich</NAME>

 <PRICE>4.75</PRICE>

(Continued)
 </FOOD>

 <food>

 <name>Soup du Jour

 <price>2.00

 <food>

 <name>Soup and Half Sandwich

 <price>4.50

 </menu>

 <menu DINNER>

 <food>
 <name>Pepperoni Pizza</name>

 <price>8.99</price>

 <icon smile>

 </food>

 <food>

 <name>Other Toppings</name>

 <price>0.50</price>

 </food>

 <food>

 <name>Double Cheeseburger

 <price>7.50

 </restaurant></food>

 <restaurant name="Fred’s China Town" ID="CHITO">

 <food>
 <Name>Lunch Buffet</Name>

 <Price>5.99</Price>

 </food>
 <food>

 <name>Spicy Chicken</name>

 <price>5.50</price>

 <icon chili>

 </food>

 </restaurant>

 <restaurant name="Fred’s Little Italy" ID=LITTL>

 <food>

 <name>Lasagna</name>

 <price>7.99</price>

 </food>

 </restaurant>

</menugroup>

2.

Update your computer lab system from chapter 2 to well-formed XML. There is no W3C XML validator to check for well-formed XML, but there are numerous tools that can be found through Google search or you can simply test in a web browser. Do not worry about a DOCTYPE tag.
3.

Design an XML vocabulary to keep track of items in a shop’s inventory. Do not include quantities on hand or anything of that sort, only product information. You must include the product description, UPC number (this is shown to users and searchable, and is 12 digits long), product ID number (users never see this), price per unit, wholesale price per unit, item shipping weight, and give the item a category. Also include front and rear photographs of the item, both optional. Create some imaginary products (at least seven of them) with varying characteristics and populate an XML document with the data for those items. Do not worry about a DOCTYPE tag.

5.1 RSS

RSS, which stands for either Rich Site Summary or Really Simple Syndication (the latter term is the currently official term for RSS), is one of the most popular uses of XML currently. Many websites are adding RSS capability so web browsers Firefox, Internet Explorer 7, various syndication-tracking programs, and even MP3 players can check for the latest updates to a website without using HTML. RSS is reasonably simple to learn, and a great way to get better acquainted with “real world” XML. As RSS becomes more popular, there is a high demand for websites, particularly very large websites with a lot of server-side programs behind the scenes, to implement RSS feeds, which are individual XML documents, to keep up with the trend. Note, however, that not every site is right for RSS. RSS should only be used on sites that are driven by updates, for example, news sites, blogs, stores adding new products, or sites that update and add new content regularly. A site like Fred's Restaurant would be a silly place to run an RSS feed.
Historically, the idea of using XML to syndicate web content actually came from Microsoft. They created the Channel Definition Format, which was released with Internet Explorer 4 and used in conjunction with the “Active Desktop” feature. This feature was not widely used, partly because it was overcomplicated and had few features. One hassle was the need to create not one, not two, but three logo images to be displayed in the various favorites menus in IE4. The CDF vocabulary also did not carry much information to the user; instead it facilitated offline browsing. Microsoft submitted CDF to the W3C for consideration to becoming a recommendation in 1997, but nothing ever became of that. RSS improves upon CDF by carrying a short summary of the latest news items that can be read, in the case of Firefox, right from the bookmarks menu. The so-called “Live Bookmarks” display a list of the titles of updates, and you can go straight to the update that you find interesting.
RSS is another free standard, although it is not maintained by the W3C. It was developed by Dan Libby at Netscape in 1999, to purposely compete with CDF in Netscape’s “My Netscape” portal. In 2003, RSS had gotten popular enough to gain its own standardizing body, the RSS Advisory Board. This book will cover the RSS 2.0.1 Specification <http://www.rssboard.org/rss-specification>.
A valid RSS file must first be a valid XML file, so be sure to follow all the rules of a well-formed XML document. The root element of an RSS document is, simply enough, rss.

	<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">

</rss>

Note that RSS has no DOCTYPE tag. You can create an XML vocabulary without creating a Document Type Definition, although you are then unable to take advantage of the features of DTDs. The RSS Advisory Board chose to take this route, so there is no DTD for RSS. In its Netscape days, RSS did have a DTD, but it was phased out. Also note the version attribute on the rss element, that attribute is required.
Once you have the RSS tag in place, you can add a channel to the feed. There can only be one channel per RSS document, which leaves me wondering why channel was not chosen as the root element for RSS. Anyway, the channel element has no attributes, only children. There are only three child elements that are required in RSS:

	<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">

 <channel>

 <title>Name of Channel</title>

 <link>http://address.of/site</link>

 <description>Description of Channel</description>
 </channel>

</rss>

The title element contains the channel name, the link element is a link to the site which is being syndicated, and the description element describes the channel. Notice, already, how intuitive these element names are. This is what you should expect from any good XML design. If you go out and look at a CDF file, you will see an example of a very poor XML design. Many of the elements and attributes are arbitrary and do not make sense, especially in terms of nesting.
At this point, you have a description of a feed, but no content. This is not much of an RSS file, so why isn't more information required? Basically, this allows for a new site that does not have any content yet to start a feed right from the beginning. It would be a tad annoying to forbid a webmaster from creating an RSS feed and adding the information above until he has content to syndicate. This is another good design point.

To begin syndicating content, you add items. You should also add a lastBuildDate every time you update the feed, so a browser can just check the date to see if there has been any change. There is a specific format you must use for the date, which you can find referenced from the RSS 2.0.1 Specification <http://www.rssboard.org/rss-specification>.

	<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">

 <channel>

 <title>Name of Channel</title>

 <link>http://address.of/site</link>

 <description>Description of Channel</description>

 <lastBuildDate>Mon, 1 Jan 2007 00:00:00 GMT</lastBuildDate>
 <item>

 <title>Welcome to my Site</title>

 <link>http://address.of/site/0107/welcome</link>

 <description>My site is now open. I will be syndicating my content with RSS.</description>
 <pubDate>Mon, 1 Jan 2007 01:00:00 GMT</pubDate>
 <guid isPermaLink="true">http://address.of/site/0107/welcome</guid>

 </item>

 </channel>

</rss>

I've spaced out the item to make it a bit easier to look at. It is never a bad idea to do the same in your own RSS or XML documents. As you can see, there is a title, link, and description, just like before. These describe the item in question, rather than the whole channel. RSS only requires that either title or description is present as a child of item, but I suggest that you always include title, as that is most often used by browsers. description may contain HTML only if it is escaped with entities (see chapter 3, HTML for information on entities). These are self-explanatory fields, but as a side note, it is best to be brief with titles and descriptions. Many RSS syndication programs display feeds in a narrow box, such as a favorites menu or sidebar, and longer titles and descriptions may get cut off.
guid is a unique identifier for the news article. This is used by syndication programs to determine whether it has seen an item or not. If you modify the information about an item, but the URL remains the same, by having a guid element the syndication program can detect that it has already seen this item, and will not present it as a new article. You should place a URL for that one item here, although any string is allowed. isPermaLink is set to true, indicating that the content of the element can be treated as a URL. This attribute is optional and true by default, so you may skip it, unless you do not want the content to be treated as a URL. pubDate is the publication date and follows the same formatting rules as lastBuildDate.
Multiple items may be present, and newer entries should come higher than older ones. Usually the order in which items appear in the RSS feed is the order in which they are presented to the user.

To make an RSS feed appear automatically when a webpage is loaded, add this tag to the header section of the HTML:

	<link rel="alternate" type="application/rss+xml" title="RSS Feed Title" href="rssfile.xml" />

Firefox and Internet Explorer 7 will display an orange icon to notify the user that an RSS feed is available.

5.2 Podcasting
Podcasting has got to be one of the most Apple-centric terms that has ever been coined on the internet. It conveys the notion that a podcast can be used only by the Apple iPod player. In reality, a podcast is just an ordinary RSS file, and it could be used by any audio player.
The podcast involves syndicating a feed from a synchronization device for a portable audio player, such as iTunes for the Apple iPod, and having it download and transfer new content whenever the feed is updated. iTunes expands on the RSS format by embedding extra information within the itunes namespace. I will provide an example of this momentarily.

The basic podcast consists of one extra element within each item: an enclosure.
	...
 <item>

 <title>Barking Dog</title>

 <link>http://address.of/site/bark.mp3 </link>

 <description>My podcast is now live. Listen to this dog barking.</description>

 <pubDate>Mon, 1 Jan 2007 01:00:00 GMT</pubDate>
 <guid isPermaLink="true">http://address.of/site/bark.mp3</guid>

(Continued)

 <enclosure url="http://address.of/site/bark.mp3" length="1234567" type="audio/mpeg" />

 </item>

...

The enclosure is one of the very few empty tags in RSS. All three attributes are required: url with the URL of the audio file (or video, or any other type of file), length with its file size in bytes, and type with its MIME type. A MIME (Multipurpose Internet Mail Extensions) type is a categorized description of the type of file in use, and is standardized by the IETF. A great listing of MIME types can be found at W3Schools <http://www.w3schools.com/media/media_mimeref.asp>.
The iTunes extensions are added by declaring a namespace and tying it to the itunes prefix. A simple example of this is the itunes:explicit element, which causes a parental advisory icon to appear in the iTunes interface to flag explicit content. Its values are yes, no, or clean. To indicate that this audio stream is clean, the above example might be modified in this way:

	<rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" version="2.0">
...
 <item>

 <title>Barking Dog</title>

 <link>http://address.of/site/bark.mp3 </link>

 <description>My podcast is now live. Listen to this dog barking.</description>

 <pubDate>Mon, 1 Jan 2007 01:00:00 GMT</pubDate>
 <guid isPermaLink="true">http://address.of/site/bark.mp3</guid>

 <enclosure url="http://address.of/site/bark.mp3" length="1234567" type="audio/mpeg" />
 <itunes:explicit>clean</itunes:explicit>

 </item>

...

This is an example of an extension to an XML document through an alternate namespace. The RSS 2.0.1 standard has been “frozen” by the RSS Advisory Board. RSS recommends that extensions be developed using a similar namespace method. LiveJournal, a popular blogging site, has added elements lj:music and lj:mood as children of each item to represent its trademark music and mood indicators on each post. Most RSS readers just ignore this information, but should one ever be able to recognize it, it’s there.

5.3 Chapter Review & Exercises
This chapter covered the syntax for the RSS vocabulary. You should now know how to create regular website syndication feeds as well as multimedia “podcasts.”

1.

Find a site that is appropriate for RSS as described above, that does not have any RSS feed associated with it. Create an RSS feed that includes the three latest entries to this site. Then save the HTML file from the site and link to the new RSS feed. Try adding the feed to your Live Bookmarks in Firefox or Internet Explorer 7 and see how it behaves.
2.

Create a podcast for a weekly radio show. You can make up the information for the channel, and give each item a title and description. The MP3 files you need to load are as follows:

	Show1.mp3
	8,465,134 bytes

	Show2.mp3
	7,510,978 bytes

	Show3.mp3
	9,219,035 bytes

	Show4.mp3
	9,932,805 bytes

Note that the first show is the oldest, and the fourth show is the most recent.

6.1 XHTML

You should be able to guess that XHTML stands for Extensible Hypertext Markup Language, since it is basically the combination of HTML and XML. XHTML documents are well-formed XML documents, and that is basically the only difference between XHTML and HTML. If you remember how to make a well-formed XML document, you will not have any problem converting HTML to XHTML. However, there are a few tricky things that you need to remember when making the conversion. Since XHTML has no new syntax over HTML, and since an XHTML reference is also freely accessible as the XHTML 1.1 Specification <http://www.w3.org/TR/xhtml11/>, this chapter is dedicated solely to the issues involved in upgrading a website from HTML to XHTML. In addition to RSS and AJAX, the process of modernizing HTML code to be well-formed XHTML is one of the big industries created by XML.
I have had a difficult time accepting XHTML as a standard. I have resisted it for years since it first became a W3C recommendation in 2000. It seemed silly to create a new standard for HTML when the current standard works well, and ten years worth of the internet will always be HTML documents and always need to be accessible, regardless of how many currently maintained webpages are coded in XHTML. For this reason, we will always have the Internet Explorer browser, which is based on NCSA Mosaic, which happens to be the first graphical web browser ever produced.
This leads one to ask, if the code is the same (except for changes to make the document well-formed), and the results for the end user are the same, why bother to update to XHTML? What does XHTML add to HTML? Well, the answer is in the name: XHTML makes HTML extensible. Do you remember the example from chapter 5 of extending an RSS file’s capabilities by adding tags from another namespace, as Apple and LiveJournal did? The same can be done with XHTML documents. You can embed math expressions using MathML, you can embed Scalable Vector Graphics, and you can embed any other format that uses XML. If you run a Google search for XHTML documents with these other XML formats embedded inline, you should come across several testcase files, which are simple XHTML documents that demonstrate that your browser can, or can’t, handle the technology. Internet Explorer cannot even handle valid XHTML files to begin with (I will talk about this later in the chapter), but Firefox has XHTML and MathML and SVG all included in its main distribution, so the testcases work flawlessly.
What does this mean for the web as a whole? Well, if you remember the idea of a Web 2.0, there is a driving force behind changing the internet from a document-oriented interface to an application-oriented interface. It is no longer exciting to be able to have tables and bold text and images, so it is time to add new features to the internet. Although it is already possible to add a limited amount of functionality to the internet through browser plug-ins, such as the Macromedia Flash Player, those act as an object affixed to the page (using the object element) which has little connection with the surrounding HTML document. With XML and namespaces, it is possible to mix elements from XHTML with elements from another XML vocabulary, and blend them together however suits your project. You can even mix attributes from one vocabulary with attributes from another by prefixing them properly.

The other advantage that XHTML has over HTML is, due to its rigid, well-formed structure, the ability to programmatically access any element or attribute in the document and modify it dynamically. JavaScript is a programming language that is interpreted, not compiled, and is embedded in HTML or XHTML documents and processed by the browser on the end user's computer. HTML, which is affectionately called “tag soup” by XHTML proponents, cannot be treated and manipulated as a hierarchy because a very small proportion of HTML documents are even well-formed enough for the JavaScript engine to have a prayer of making any sense of it. The only way to modify an HTML document using JavaScript is to use its document.write function to add text wherever in the document this command is found. Once the document has finished loading in the browser, no further writing can be performed. Unfortunately for people who have become used to this JavaScript command, it is no longer possible to use the document.write function in XHTML.
Instead, XHTML is manipulated using the Document Object Model (DOM), which is (gasp) another W3C recommendation. Basically, by using the Document Object Model, you can manipulate any element at any location in the XHTML file in any way you would ever want. Instead of writing plain text containing tags, you create a new element and fill it with contents. Of course, this can be a hassle if you are writing a block of text with numerous hyperlinks, because each a element must be added individually, but it is the only way to maintain the XHTML document’s well-formed structure. The DOM includes many features for handling namespaces, as well. This allows you to add elements under any namespace at any time.

As a side note, it is possible to perform DOM commands against HTML documents. I do not intend to mislead you, it can be done with good old HTML 4.01. However, when a browser is instructed to perform a DOM command against an element that is not well-formed, the browser may perform that command very differently than expected. This problem is compounded by the difference in how gracefully browsers handle this situation. Many HTML authors are never aware that their HTML documents are not well-formed because the browser they test with handles the code gracefully enough to make it seem as though it received well-formed code. To be safe, reserve use of DOM commands to XHTML documents. DOM programming is very complicated, and can fill a 500 page book by itself. I will not cover DOM, but it is available for reference from the W3C <http://www.w3.org/TR/DOM-Level-3-Core/>.
Aside from the future benefits of XHTML, there is one present benefit: By being strict about well-formed tags, XHTML requires less processing power and less complicated algorithms to render. This means that XHTML can be displayed by devices with less processing power, such as mobile phones. The catch is that XHTML is so new and uncommon that very few of these devices will use an XML parser to read webpages anyway. By the time XHTML has proliferated enough to justify that, HTML browsers will be made leaner and portable devices will have more power. As an example, the Sony Playstation Portable, a handheld gaming system, has a wonderful browser that is downloaded into the system’s firmware as part of an update. The browser has better compatibility both with tag soup HTML pages and with W3C standard webpages than Internet Explorer, and runs on a palm-size system with only a 266MHz processor.

One final benefit of XHTML: It, being XML, can be styled using either Cascading Style Sheets (chapter 8) or Extensible Stylesheet Language Transforms (chapter 9). I will explain those as they come along, but the idea of the latter is to be able to take any input XML document and transform it into any format, XML, HTML, or plain text, that is desired. One could even have a webpage that can be styled and output a printer-friendly PDF (Portable Document Format) file! The possibilities are literally endless. HTML has reached the end of the line as far as innovation, so it may be time to put it to rest.

6.2 Switching to XHTML

XHTML is easy to learn, because it is nearly identical to HTML. The only problem with that is that, if you have been working with HTML for a long time, you may discover that what you have actually been writing was not valid HTML at all. There are also a few elements that have been completely removed. I am using and will discuss XHTML 1.1, which is a very strict implementation that does not include any elements that have a better alternative using other elements or CSS. The idea of XHTML 1.1 is “modularization,” which is this process of removing extraneous elements in the hope of making the vocabulary leaner and more portable. Although one could simply convert their documents to XHTML 1.0 Transitional, which is the same as HTML except for requiring that your document is well-formed, that seems like a rather trivial step forward in modernizing your code. I originally designed this book’s website using HTML 4.01 Transitional, but I decided to convert everything to cutting-edge XHTML 1.1 (strict, which is the only document type available in XHTML 1.1). Since I already had a large amount of content, it was a bit of a hassle. This helped me discover a few problems in converting from HTML to XHTML that did not appear in my research.
The main problem I discovered was the loss of several attributes which I held dear to my heart, but were phased out in XHTML 1.1. An example of this is the name attribute on the a element. An anchor can be either a source (as in a hyperlink) or a destination. By adding a destination anchor to a point in the middle of a document, you can then reference it in a mid-page link like so:
	

This is a neat trick, and you may have noticed that it works for skipping around sections in the online version of this book. You simply link to #middle, and the browser will skip ahead to the location of that anchor. However, this is actually incorrect syntax. You see, in HTML and in XML, there are classes and there are identifiers. A class can apply to many items. An identifier can only apply to one item, because it identifies it. Now, by giving an element a name, you do not prohibit other elements from having the same name. The name attribute could be the same for two different a elements, and the browser would have to decide which one to select. There is no name attribute for the a element in XHTML 1.1, probably for this reason. However, the behavior is the same in version 5 browsers for the id attribute.

	

There is just one problem with this. XHTML also has rules governing the use of identifier names. In HTML you could make them up however you wanted, but in XHTML your identifier names cannot begin with a number. This forced me to change my identifier names, as I was using numbers only.

Another problem I encountered involved the use of CSS. I found that styles on the body element, particularly background colors and images, would not cover the entire surface of the page. This is because the body is a box within the HTML document, and extra space that does not contain any of the content contained within the body element was not styled (e.g. no background). To work around this problem, I moved all of my background styles to the html element. This too was sufficiently backward compatible for me to be satisfied.

HTML has many minimized attributes, particularly in forms. One popular use of a minimized attribute was to check a checkbox, which is most often done to have an irritating newsletter sign-up option be checked by default:

	<input type="checkbox" name="signup" value="yes" checked />

This is not well-formed XML. If you remember the rules, minimized attributes are no longer allowed in XML. To rewrite any such attribute from HTML, just set the value to the attribute name:
	<input type="checkbox" name="signup" value="yes" checked="checked" />

This resolves the problem and still works in old browsers. The same process can be done to any minimized attribute from HTML (as long as that attribute still exists in the XHTML 1.1 vocabulary).
Another problem arises when embedding JavaScript code or CSS within an XHTML document. Previously, HTML browsers processed script code and CSS first, and then removed it from the document. This meant that an author could use greater-than and less-than symbols for comparisons, or ampersands as Boolean operators. In XHTML, as with any XML, the parser inspects the document first and develops the element structure. However, it would flag reserved characters like these as syntax errors, because it would view anything between a less-than and greater-than symbol as a tag and the ampersand as the start of an entity. This is because, by default, element contents are treated as Parseable Character Data (abbreviated PCDATA) and the contents are parsed to check for child elements. Although the script and style elements, which are used for JavaScript and CSS, are not defined to have any child elements, it is possible that the XHTML specification continues to treat their contents as PCDATA in the event you ever want to embed XML within these tags. There is, however, a workaround.
XML has a construct to define a block of text as ordinary Character Data (or CDATA) that will not be parsed. The way to do this is to use the CDATA section tag to prevent it from being parsed:
	<script type="text/javascript" language="JavaScript">

<![CDATA[

function notParsed() {

...

}

]]>

</script>

The beginning of the CDATA section is marked with the characters <![CDATA[, and the end is marked with]]>. This will appear to the browser as character data. However, this poses a problem for old browsers. Since old browsers treat XHTML as regular HTML and do not parse it, as such it will see the CDATA section tag and treat it as a syntax error. To prevent this, comment out both parts of the CDATA section tag in your script:

	<script type="text/javascript" language="JavaScript">

/*<![CDATA[*/

function notParsed() {

...

}

/*]]>*/

</script>

This method works for both JavaScript and CSS. Since XHTML does not understand JavaScript-style comment tags, it will simply treat the first /* and the last */ as PCDATA that happens to mean nothing.

There is one other important thing to mention when talking about script blocks, which applies to people who have developed the habit of enclosing their entire JavaScript or CSS blocks in comment tags. This was done back in the early days of scripting and stylesheets, when old browsers that did not recognize the script and style elements would simply dump the entire block of text onto the screen as if it was character data for the parent element. This has remained the trend for many years, even as browsers that did not recognize those elements have long since gone extinct, because it was trivial to insert the extra comment tags to be “better safe than sorry.” Unfortunately, when you convert these HTML webpages to XHTML, you will find yourself more sorry than safe, because the XML parser will disregard the comments before the browser has an opportunity to read the code. This will result in the script disappearing from the page. You should consider doing away with the comment tags on scripts anyway. Every browser available today, including browsers for portable devices and television set-top boxes, either knows well enough to disregard the content or is actually capable of understanding a limited amount of JavaScript and CSS. If you want to be completely safe, and avoid both XHTML parsing issues and problems with (very) old browsers, simply save the script or style sheet as an external file and reference it from within the XHTML document.
One last issue I encountered when converting to XHTML was, due to the ambiguity of having an XML document with no namespace, my XHTML webpage was rendered as a naked XML document. This was because I did not define the namespace for my document. To resolve this, I added the namespace to the html element, thus making it the default:

	<html xmlns="http://www.w3.org/1999/xhtml">

As a quick summary of XHTML conversion issues, here are some things you need to remember:

· All elements must have a start tag and end tag. For empty elements, use a self-closing tag, e.g.
.

· Expand minimized attributes, e.g. attribute="attribute".

· All attribute values must be contained in quote marks.

· Convert all element and attribute names to lowercase. All HTML tags and elements are lowercase, with a few exceptions such as script events, e.g. onClick.

· Include an XML declaration and a DOCTYPE tag.

· Declare the XHTML namespace as the default for the document.

· Eliminate use of name attribute on elements (except form objects).

· Eliminate use of deprecated elements that have been removed from the XHTML vocabulary.

· Do not comment out script sections, and use CDATA section tags.

· The body element is a box; move background styles to the html element.

There is just one more problem with the conversion from HTML to XHTML. How do you know if you have a well-formed document at the end? Obviously, a good place to start is the W3C Validator <http://validator.w3.org/>. However, the validator does not, by default, tell you if your document is actually being sent to the browser as XHTML. When you test your XHTML webpage, you may very well be testing it as a regular HTML webpage.
6.3 The XHTML MIME Type

There is one thing you need to remember about XHTML documents. The MIME type, or Content Type, of XHTML is application/xhtml+xml. Since XHTML is also XML, you could substitute text/xml, but the XHTML MIME type is more specific and a better choice. You should use a proxy or CGI script to check the headers being sent by your XHTML webpage to see if the MIME type is correct. If your webpage still works in Internet Explorer, the MIME type is being incorrectly sent as text/html. Your XHTML webpage might look like a perfectly fine HTML webpage, and the browser will never know the difference. However, once you try to use an XML feature in your XHTML document, you will discover that it doesn’t work, since it is not being loaded as XHTML. You will then fix the MIME type only to discover that you never had valid XHTML at all.

The problem lies in backward compatibility. After all, what good is a webpage if it cannot be viewed in Internet Explorer at all? This leads us to a subject of debate in the XHTML world: Should you report your webpage as XHTML or as HTML? The correct answer is both, and neither.

To allow your webpage to degrade gracefully, you need to use a bit of server-side scripting to try to guess what the browser wants. With an HTTP request, a browser is supposed to tell the server what MIME types it will accept. Internet Explorer does not provide this information, instead it accepts */* (if you guessed that this is a wildcard to cover any MIME type, you would be correct). On the other hand, the Mozilla Firefox browser includes application/xhtml+xml in its accept list, because it is capable of parsing it as XML as intended. The goal is to send Firefox the real XHTML document, and to lie to Internet Explorer and tell it your XHTML document is an ordinary HTML document.

I accomplished this using the PHP scripting language, which I feel is the simplest way to handle the problem. However, most servers running the Apache web server have configuration files, called .htaccess files, which can contain instructions to the server's URL Rewriting Engine. This method allows you to switch the MIME type of static, non-scripted XHTML files on the fly. Since I already was using PHP, I decided to stick to that method.

The way HTTP works is as follows: First, the browser on the client side sends a request to the server, containing the URL being requested, the name of the browser being used, the version of HTTP being used, the referring page, and the accepted content types. This “Accept” header is the one that will be checked. The stristr function evaluates as true if the second string is within the first. To check for whether the browser accepts XHTML, the first string is the value of the Accept header, and the second is the MIME type being sought, application/xhtml+xml.

	if(stristr($_SERVER["HTTP_ACCEPT"],"application/xhtml+xml")) {

 header("Content-Type: application/xhtml+xml; charset=ISO-8859-1");

}

else {

 header("Content-Type: text/html; charset=ISO-8859-1");

}

If the Accept header contains the XHTML MIME type, it is assumed that the browser accepts XHTML, and the proper Content-Type header for XHTML is sent to the browser. If the browser does not specifically state that it accepts XHTML, it is assumed that the browser would not be able to accept it, and it is sent the HTML MIME type instead. The document's contents are exactly the same, the only thing being changed is the HTTP header that the browser sees when it receives the XHTML webpage.

I also found that PHP is confused by the XML declaration tag, since both follow the SGML standard for processing instructions (PHP uses <?php ?>, XML uses <?xml ?>). Apparently PHP is greedy and assumes that all processing instructions are PHP processing instructions, even if a different application is indicated at the beginning of the tag. To get around this, I added an echo instruction within the PHP code:

	echo "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n";

I only needed to use a few PHP escape sequences (the same style as C++) for the quote marks and a newline character at the end of the XML declaration tag to prevent a syntax error. If you are presenting XHTML to the whole internet, this is the only acceptable way to do so. Sending XHTML as HTML to an XHTML aware browser is a waste, and sending XHTML as XHTML to a browser that cannot handle it does not degrade gracefully. There are many solutions to this problem posted on the internet, so it is worth looking for one that works best for your particular server setup. As a worst-case scenario, if you do not have access to run server-side programs, simply upload two different versions of your document, one with the .xhtml extension, and one with the .html extension, and they will be sent as their respective MIME types automatically. If you are feeling particularly mean, you could also make the HTML version be a text-only webpage with a link to download the Firefox browser at the top. This would not be a good idea in a corporate setting, since some customers access the internet from computers that do not allow the installation of new browsers. It would be a good idea for a personal webpage, if you want to make a point with your Internet Explorer viewers in an effectively disruptive way.
6.4 Chapter Review & Exercises
In this chapter, you learned how XHTML differs from HTML, some common problems that arise when converting from HTML to XHTML, and how to use the correct MIME type for XHTML and make it degrade gracefully. You should know how to escape character data and when it is necessary to do so. You should also have a basic understanding of HTTP.

1.

Convert your webpage from chapter 3 to valid XHTML 1.1, as verified by the W3C Validator <http://validator.w3.org/>. Write a response containing an explanation of some of the things you needed to change to make your page validate (especially if you failed the first try at the validator). Test your results in Firefox, ensuring that Firefox is parsing the document as XHTML (View Page Info should show Type: application/xhtml+xml). The file extension .xhtml should trigger this.
2.

Repeat exercise 1 with another webpage you find on the internet. It may be a simple page, but it must be an HTML webpage and it must not be a text-only page.

3.

Add a standalone JavaScript to either of the two webpages you converted to XHTML. This can be a JavaScript downloaded from a free JavaScript exchange site like DynamicDrive.com <http://dynamicdrive.com/>, but ensure that it is one that ordinarily works in both Internet Explorer and Firefox. Insert it into your XHTML document using the script element and do not use any external files. Also remember, the script that you choose cannot use the document.write function.
7.1 DTDs and Schema

The principle of documentation still applies to XML. Even though you might create an XML vocabulary that is so simple, since anyone could understand what a name or address element is, someone who is newly introduced your vocabulary needs to know which items are parents, which are children, what they contain, what attributes are available, what their default values are, etc. Do not document your XML vocabulary on sticky notes! There is a much better solution available, and it is the Document Type Definition (DTD). Contrast the word Definition with Declaration, because the Declaration that you place in your XML document declares the Definition, which will often be its own .dtd file.
DTDs were originally a part of SGML, and are now a part of the XML specification. They are structured lists of entities and attributes, and their relationships to one another. DTDs are not formed in XML, they are instead formed more like the DOCTYPE tag (the Document Type Declaration) from before. The file structure of a DTD can be unwieldy to look at, but it can be parsed by an XML editor or by utilities that draw the DTD as a tree diagram. There are several XML editors out there that have an autocomplete feature that helps you fill out tags automatically based on the DTD. They can also validate your document against the DTD before publishing. By creating a DTD, you are documenting your new XML vocabulary so others will be able to understand it without any ambiguity. However, if there are any additional notes to add, it is recommended that you add documentation to the DTD file within comments (same format as always: <!-- -->).

7.2 Structure

Fred has finally created that website, and now he has begun a new e-mail coupon system to drive his restaurant business. He has wisely chosen to use XML for this system. Here is a sample document for a coupon in Fred's system:
	<?xml version="1.1" encoding="UTF-8"?>
<!DOCTYPE coupon SYSTEM>

<coupon>

 <serial-number>1234567890</serial-number>

 <valid-at>

 <location>FREDS</location>

 <location>LITTL</location>

 </valid-at>

 <deal>

 <location>FREDS</location>

 <value>5.00</value>

 <requirement guests="8" dollars="75.00" />

 </deal>

 <deal>

 <location>LITTL</location>

 <value>7.00</value>

 <requirement guests="8" dollars="75.00" />

 </deal>

(Continued)

 <body>

 <text type="header">

 Save $5 at your next party at Fred's, or $7 off your next party at Little Italy!

 </text>

 <text type="regular">

 You will receive $5 off your check at Fred's Restaurant, or $7 off your check at Little Italy, when you bring a party of eight or more to visit and purchase at least $75 worth of food and drink.
 </text>

 </body>

 <terms>

 <boiler code="LIMIT1" />

 <boiler code="NOCOMBINE" />

 <boiler code="GRATUITY8" />

 <text>

 Coupon may not be applied toward price of alcoholic beverages.
 </text>

 </terms>

</coupon>

This might seem self-explanatory at first glance, but there are quite a few things you might be wondering. Does text occur anywhere in the document? Are requirements either-or or must they all be met? Fred now wants to create a Document Type Definition file for this document, to document the system’s vocabulary for anyone who will ever need these questions answered.
DTDs can become very complicated—just look at the DTD for XHTML. The easiest way to start is with the root element and with a general comment on the vocabulary:
	<!--

Fred's Restaurant Network

Coupon Document Type Definition

Defines the XML vocabulary used for defining coupons.

Coupon files are used for printing and/or e-mailing the coupons, storing a local copy of the coupons, and validating and calculating the discounts in the point of sale system when presented.

-->

<!ELEMENT coupon EMPTY>

This is now a DTD for an XML document that can only contain the coupon element with no contents. The EMPTY keyword is required for empty elements; you may not define an element without giving it some definition of its valid contents. It is easiest to continue defining the document type by continuing to higher levels of the tree. You start by listing the root element’s children:
	...

<!ELEMENT coupon (serial-number, valid-at, deal+, body, terms?)>

<!ELEMENT serial-number EMPTY>

<!ELEMENT valid-at EMPTY>

<!ELEMENT deal EMPTY>

<!ELEMENT body EMPTY>

<!ELEMENT terms EMPTY>

Notice how all of the new elements have been added to a list, in parentheses, on the coupon element definition. This indicates that those elements may appear as children (but does not require that they appear in the same order as given). To be more specific, all elements are required to appear as children of coupon for the document to be valid, except terms. To specify that a child element is optional, you place a ? immediately after the element name. To specify that a child element may be repeated, you place either a * or a + after the element name; * denotes an optional, repeatable field (appears zero or more times), + denotes a repeatable field that is not optional (appears one or more times). On fields with no operator, the element must occur exactly once. If you prefer, you may set these restrictions on a set of elements within parentheses by placing the operator at the end, as in this example:
	...

<!ELEMENT m-m-bag (red, orange, yellow, green, blue, purple, brown)*>

...

By placing the operator at the end of the parentheses, all the elements inside may occur zero or more times. If you want to add another element to which a different rule applies, you may sub-group:

	...

<!ELEMENT m-m-bag ((red, orange, yellow, green, blue, purple, brown)*, size)>

...

Returning to Fred's system, we know that serial-number contains only the serial number. How is this represented? XML elements may contain Parseable Character Data (PCDATA, you may remember this from the XHTML chapter). This is signified with #PCDATA:
	...

<!ELEMENT serial-number (#PCDATA)>

...

This raises a question that many have about the XML specification. Why would an element’s contents be Parseable Character Data when it can only contain character data, no elements? The reason is because no matter what your DTD says, the contents of serial-number are still treated as PCDATA by the parser (parsers do not usually read DTD files). Just as with XHTML, if you have a field like serial-number and you need to use special characters like the less-than sign or ampersand, you must use a CDATA section to prevent those characters from confusing the parser.

The location is also PCDATA:

	...

<!ELEMENT valid-at (location+)>

<!ELEMENT location (#PCDATA)>
...

One weakness of the DTD is that you cannot specify a fixed list of allowed values on an element. It is possible to limit the allowed values in the DTD on an attribute, which would involve rewriting the vocabulary to suit the change. However, it would not be wise for Fred to put the names of his restaurants into the DTD. The DTD should define the document, and only the document. By putting his restaurant names into the DTD, Fred would need to update his DTD any time he opens a new restaurant. Although that may seem like a rare occurrence, it is a sign of a bad DTD. Instead Fred has location codes as PCDATA in the content of the location element, and his system validates the location code against a database rather than using the DTD.

The next two elements require some explanation. It is a great opportunity to add comments to the DTD:

	...

<!ELEMENT deal (location+, value, requirement*)>

<!ELEMENT value (#PCDATA)> <!-- Value is in the format N.NN for dollars and

 cents. Do not use a dollar sign. -->

<!ELEMENT requirement EMPTY> <!-- Multiple requirements are treated as

 a meet any relationship.

 All attributes within one requirement must

 be met at the same time.

 A coupon is valid if all attributes within

 any one requirement are met. -->

...

This explains the use of requirement more thoroughly. (Note that location is not redefined, it was already defined above.) To add the attributes that are valid on this element, you add an attribute list or ATTLIST:

	...

<!ELEMENT requirement EMPTY> <!-- ... -->

<!ATTLIST requirement

 guests CDATA #IMPLIED

 dollars CDATA #IMPLIED>
...

Both attributes are #IMPLIED, which means they are optional. Later on you will see a use of #REQUIRED, which means the attribute is required to be defined. The CDATA keyword signifies that the attribute contains character data. You could put a list of valid values here, or one of a few other kinds of data that can be found in the specification. CDATA is the one you will use the most often; it is usually easier (and necessary) to validate character data in the application program than using a DTD. The dollar amount in dollars, for example, might contain a comma instead of a decimal point. A DTD cannot validate that kind of data. A good example of a set of attributes is a day of the week:

	...

 weekday (su|mo|tu|we|th|fr|sa) #REQUIRED

...

The document will fail a DTD validation if the given attribute does not exactly match (case-sensitive) any of the values on the list. Remember that most XML parsers do not validate against the DTD, so if yours does not, you still need to validate this attribute in your application program. This may only serve to help document the vocabulary (because it can be confusing when some systems use two-letter days of the week, some use three, some use one, some use the whole word, etc.).

On to the next element:

	...

<!ELEMENT body (text*, image*)>

<!ELEMENT text (#PCDATA)>

<!ATTLIST text

 type (header|regular) #IMPLIED>

...

This section should be fairly self-explanatory. Note that the type attribute is a good use of predefined validated values. Most coupons have only a header or regular text. However, there may be situations where the attribute makes no sense. This will become clear later with the terms element.
The image element (which was not used in the example) would simply contain a URL to an image file to be printed. This would simply be #PCDATA, but perhaps we want to make it more obvious that the element contains a URL. To do this, it is common practice to use an entity, which is replaced with predefined text. There are two kinds of entity in a DTD: The kind that you reference in a document (<, for example), and the kind you reference in the DTD, a parameter entity. The parameter entity syntax is very similar to a character entity, but uses a % sign instead of an ampersand. To signify that you are defining a parameter entity, you include the % as shown in the definition:
	...

<!ENTITY % url "CDATA"> <!-- Place entity definitions at head of DTD file -->

...

<!ELEMENT image (%url;)>

...

Now it is clear that the content of an image element is a URL. Entities also allow you to change things around; some W3C standards actually place every element name in an entity to enable future conversion of all element names from English to another language. Entities may be used anywhere in the DTD in place of text.

	...

<!ELEMENT terms (boiler, text)*> <!-- terms and conditions of use -->

<!ELEMENT boiler EMPTY> <!-- Boilerplate text -->

<!ATTLIST boiler

 code CDATA #REQUIRED>

...

The terms element can contain zero to many of either boiler or text elements. You do not need to define the text element twice (in fact, that would be a violation of the XML specification). However, it is important to note that when text is a child of terms, as practiced, you would never use the type attribute. There is no way to validate this rule using DTDs, so you will need to modify the application program or use XML Schema, which will be discussed later in the chapter.
You may also supply a default value for an attribute. For example, say Fred has hired a new employee who does not understand the boilerplate text that needs to appear on every coupon. Since he generates simple dollar-off coupons, he does not need access to very specific terms and conditions. To make the terms and conditions section simpler, Fred creates a new boilerplate code, DEFAULT, which contains all the boilerplate text that might be necessary on his new employee’s coupons. However, it would currently still need to be coded like this:

	...

<boiler code="DEFAULT" />

...

Fred adds a default value to the attribute in the DTD:

	...

<!ELEMENT boiler EMPTY> <!-- Boilerplate text -->

<!ATTLIST boiler

 code CDATA "DEFAULT">

...

Note that the #REQUIRED property was replaced with the default value. Now, if the code attribute is not set, it will be set to DEFAULT. However, if the code attribute is present, the value that is supplied by the author will be used. By doing this, Fred’s new employee can simply add the <boiler /> tag with no attributes.

Finally, getting back to entities, Fred would like to make it easier to include the ¢ sign in coupon text. To do this, he defines a character entity, which is used in the XML document. Note the absence of a %, which is used only to define parameter entities.
	...

<!ENTITY cent "¢">
...

The entity ¢ is a numeric character entity, which is automatically defined for all XML documents. This entity definition short-hands the same entity to a new entity, which would be called from the document in this fashion: ¢ Many similar character entities exist for HTML and XHTML.

By looking at the whole document carefully, you can determine the way elements nest. Some DTD processing tools will draw the elements as a tree. Here is the full DTD for Fred's coupon vocabulary:

	<!--

Fred's Restaurant Network

Coupon Document Type Definition

Defines the XML vocabulary used for defining coupons. Coupon files are used for printing and/or e-mailing the coupons, storing a local copy of the coupons, and validating and calculating the discounts in the point of sale system when presented.

-->

<!ENTITY % url "CDATA">

(Continued)

<!ENTITY cent "¢">

<!ELEMENT coupon (serial-number, valid-at, deal+, body, terms?)>

<!ELEMENT serial-number (#PCDATA)>

<!ELEMENT valid-at (location+)>

 <!ELEMENT location (#PCDATA)>

<!ELEMENT deal (location+, value, requirement*)>

 <!ELEMENT value (#PCDATA)> <!-- Value is in the format N.NN for dollars and

 cents. Do not use a dollar sign. -->

 <!ELEMENT requirement EMPTY> <!-- Multiple requirements are treated as

 a meet any relationship.

 All attributes within one requirement must

 be met at the same time.

 A coupon is valid if all attributes within

 any one requirement are met. -->

 <!ATTLIST requirement

 guests CDATA #IMPLIED

 dollars CDATA #IMPLIED>

<!ELEMENT body (text*, image*)>

 <!ELEMENT text (#PCDATA)>

 <!ATTLIST text

 type (header|regular) #IMPLIED>

 <!ELEMENT image (%url;)>

<!ELEMENT terms (boiler, text)*> <!-- terms and conditions of use -->

 <!ELEMENT boiler EMPTY> <!-- Boilerplate text -->

 <!ATTLIST boiler

 code CDATA "DEFAULT">

Note that the child elements are indented. This makes the DTD slightly easier to understand when the nesting of elements is predictable. However, when you have elements that could be listed by an element at any level in the hierarchy, this would only make the document more confusing and it would be best to leave the element definitions flush left.

Now that we have finished the DTD, we have established the documentation of the vocabulary, and we have defined character entities that will be used. For many situations, this is good enough documentation for the vocabulary. However, there are still several weaknesses that have been spotted during the creation of this DTD:

· The dollars attribute is not validated as a two-decimal-place number field without a dollar sign.
· The type attribute on text does not apply when it is a child of terms.

· There is no way to specify a set of acceptable values for the content of an element; this can only be done for attribute values.

· There is no way to define a hard minimum or maximum number of instances of a given element or attribute; only one or one-to-many.

All four of these problems, and too many others to list, are addressed with the W3C standard XML Schema.

7.3 XML Schema

Although DTDs allow a great deal of control over the structure of an XML vocabulary, there are still holes within its structure that prevent DTDs from fully controlling a document. To improve upon this SGML crutch of XML, the W3C has come out with a recommendation for XML Schema. XML Schema is an XML vocabulary that is used to define the structure of your own XML vocabulary, much like you can do with DTDs. However, XML Schema offers many, many more controls over your document, and in fact, too many to list. You can buy an entire book on just XML Schema, or you can view the W3C standards for the normative definitions of all the functions of XML Schema.

Of course, XML Schema is still not able to validate everything. The benefit of using XML for XML Schema is that it is every bit as extensible as any other format, and you can extend XML Schema for your own applications. It is also easier to parse XML Schema; you can use the same XML parser rather than a separate DTD parser. The main problem that accompanies XML Schema’s power is its complexity. I will do what few authors who cover XML Schema do; I will keep the XML Schema syntax that I cover short. We will convert Fred’s coupon system from DTD to XML Schema.

Before I begin, I want to point one thing out. The way XML Schema is defined does not allow the use of default namespaces for any element in the Schema vocabulary. This forces us to use qualified names on every element (usually xsd:localpart) for every element in the schema. This can be very ugly to look at and difficult to follow, so I will leave the xsd:’s off until the end.

First comes the schema element, which is the root element of an XML Schema (but, since you will probably be embedding it, needs not be the root element of your XML document).

	<schema xmlns="http://www.w3.org/2001/XMLSchema">
</schema>

XML Schema has elements and attributes, but they are no longer just a flat listing. Now, elements and attributes are nested within each other, just as they appear in the actual document. For starters, the easiest element: serial-number. Notice how it is nested under the root element definition.
	<schema xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="coupon">

 <complexType>
 <sequence>

 <element name="serial-number" type="xsd:string" />
 </sequence>

 </complexType>

 </element>

</schema>

Even for a two-element document, this is already a very complicated Schema. Let’s look at it piece by piece.
First, there is the element element. This is the same as an element definition (!ELEMENT) in a DTD. The element name is then supplied in the name attribute. An element can be defined one of three ways:

1. As having only character data content that fits one of the XML Schema predefined formats: xsd:string, xsd:decimal, xsd:integer, xsd:boolean, xsd:date, or xsd:time. This is done using the type attribute, as was done on serial-number.

2. As having only character data content that is derived from those formats with more specific rules, which are called restrictions and extensions, which is known as a simpleType. All of this will be covered shortly.

3. As containing other elements as children, or having any other rules that are not covered by simpleType, which is known as a complexType. This is how the root element, coupon, has been defined.
The complexType element is used to define the contents of the coupon element. There are three operations that appear as elements that are children of complexTypes:

1. all – all of the elements under this operation must appear exactly once (or they may be made optional with the minOccurs="0" attribute) and they may appear in any order.
2. choice – allows only one of the elements under this operation to appear. maxOccurs and minOccurs apply to repetitions of the same element; if the maxOccurs is set to 3, you may have three of one element, but they must be the same element.
3. sequence – all of the elements in a sequence must appear in the order specified, and they each appear from minOccurs to maxOccurs times (default for both is 1).
You may use operators on other operators; you could have a choice of a sequence of city, state, zip, or a sequence of city, province, and postal-code. The possibilities are endless. What would you do if you did not want any restriction on the number or order of elements? You would simply have a sequence of choices, and the maxOccurs of the sequence is unbounded (in other words, unlimited). The attributes minOccurs and maxOccurs may be set on individual elements as well as operators.

As one side note, XML Schema does not have a mechanism for named character entities like DTDs do. As a result, you will still need to create DTDs for documents that use them. In most cases, it is much simpler to use DTDs and enforce the stricter formatting rules in your application program than to create a Schema. At least you now know what is involved in making a Schema and could understand one that was already produced.
Now to add the valid-at element. Previously the DTD did not include the location codes because DTD had no mechanism for enforcing the value of an element, and also it would not be easy to update the definition when a new restaurant has been added. The latter part of the explanation still holds true, but for the sake of example, here is how one would enforce the value of the location codes under the location element:

	...

 <sequence>

 <element name="serial-number" type="xsd:string" />

 <element name="valid-at">

 <complexType>

 <complexType>

 <sequence minOccurs="1" maxOccurs="unbounded">

 <element name="location">

 <simpleType>

 <restriction base="xsd:string">

 <enumeration value="FREDS" />

 <enumeration value="CHITO" />

 <enumeration value="LITTL" />

 </restriction>

 </simpleType>

 </element>

 </sequence>

 </complexType>

 </element>

 </sequence>

...

The simpleType element defines the content of the location element. A simpleType may contain restrictions, but extensions must be placed in a simpleContent element. A restriction takes the set of all existing possible values for the element (or attribute) to which it applies, and it removes all values that are not defined under the restriction from that set; an extension takes the set of values and adds the values that are defined under the extension to that set. An example of an extension will come later when we arrive at the text element. Also, the base is the predefined set of values that is being restricted or extended.
In the example above, the only three values that are valid for the location element are the three location codes for Fred’s restaurants. They appear as enumerations. If Fred ever added a new restaurant, he would need to update the Schema. (Because it is an XML document, depending on his system, Fred might be able to add this using the Document Object Model. There are very few instances in real life where this would be practical, though.)

Also note the use of a sequence operator. Even though only one element is defined in this complexType, the Schema specification does not allow a complexType to contain an element definition as a child. Element definitions must be contained in an operator.

The Schema gets more complicated with the deal element.

	...

 <element name="deal" maxOccurs="unbounded">

 <complexType>

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element name="location" />

...

 </sequence>

 </complexType>

 </element>

 </sequence>

...

Hold the phone. We just defined the location element. If we define it again here, with the three enumerations, Fred will have to update his restaurant locations in two places! To redefine the location element here would be a bad idea. What should we do instead?

We can avoid duplicate definitions by writing a global definition. Any element in the Schema—be it a complexType or an element or a simpleType—can be made into a global definition as necessary. It is possible to overdo it, though, and cause your Schema to be even more confusing than it is anyway. This is an example of a necessary global definition:

	<schema xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="location">

 <simpleType>

 <restriction base="xsd:string">

 <enumeration value="FREDS" />

 <enumeration value="CHITO" />

 <enumeration value="LITTL" />

 </restriction>

 </simpleType>

 </element>

...

You then place a reference to this global definition wherever the location element appears:

	...

 <element name="valid-at">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element ref="location" />

 </sequence>

 </complexType>

 </element>

 <element name="deal" maxOccurs="unbounded">

 <complexType>

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="location" />

 </sequence>

 </complexType>

 </element>

 </sequence>

...

Now both instances of location are defined up at the top of the Schema, and one change affects both of them. Anytime you have repeating elements, you should strongly consider doing this. Note that you may not use both name and ref on a referenced element, just use ref.
The next child of a deal is the value element. Previously the only rule was that this must contain character data, but there were other rules needed (as evidenced by the comment in the DTD). Schema gives us much more control over the data:

	...

 <element name="location" ref="location" />

 <element name="value" minOccurs="1" maxOccurs="1">

 <annotation>

 <appinfo>Occurs exactly one time</appinfo>

 <documentation>Each deal may have only one value.</documentation>

 </annotation>

 <simpleType>

 <restriction base="xsd:decimal">

 <fractionDigits value="2" />

 </restriction>

 </simpleType>

 </element>

...

First, note the annotation. This is the same as a comment. The reason why XML Schema has annotations is because an XML parser would remove standard XML comments before parsing the Schema, and you may want your comments to be parsed and rendered by an application program. Each annotation must contain an appinfo and documentation. How you use them is up to you.
The format of a value is a decimal number, restricted to values with no more than 2 digits past the decimal point. If a dollar sign were entered, it would not be a valid decimal number.

Next comes the requirement element. The semantics behind its use are not really enforceable, but this is a good place for another annotation:

	...

 <element name="requirement">

 <annotation>

 <appinfo>Usage of requirement</appinfo>

 <documentation>Multiple requirements are treated as a meet any relationship. All attributes within one requirement must be met at the same time. A coupon is valid if all attributes within any one requirement are met.</documentation>

 </annotation>

 <complexType>

 ...

 </complexType>

 </element>
...

This element is going to require a complexType, because it contains attributes. Attributes cannot be contained in a simpleType. In a way they are treated the same as child elements, except that they are defined by the attribute element. As one quick note before adding attributes, you never group attributes in alls/choices/sequences as you would elements. Also, attributes should not be repeated in XML, and cannot be repeated in any document validated with DTD or Schema. If you think about it for a moment, you are equating a name with a value; if you equate a name with one value and then equate the same name with another, you are saying the first value equals the second, different second value, which is not a valid equality. Also, the order of attributes does not matter.

In Schema, attributes are defined as being optional, required, or oddly enough, prohibited.
	...

 <complexType>

 <attribute name="dollars" use="optional">

 <simpleType>

 <restriction base="xsd:decimal">

 <fractionDigits value="2" />

 </restriction>

 </simpleType>

 </attribute>

 <attribute name="guests" use="optional">

 <simpleType>

 <restriction base="xsd:integer">

 <minInclusive value="0" />

 </restriction>

 </simpleType>

 </attribute>

 </complexType>

...

The first attribute, dollars, is defined the same way as value was earlier. This simpleType could have been made a global definition just like location, but for simplicity it was left as-is. One may decide to define the value element to have a maximum value, to prevent a sneaky employee from generating $100 off coupons. $100 might be a valid restriction dollar amount, so this maximum value should only be set on value, and it would be more complicated to revise the Schema later to accommodate this. You may define global types and then redefine those in this fashion. There will be an example of that later.
Speaking of maximum values, the restriction on guests is a great example of, well, a minimum value. But I will go ahead and tell you what all four minimum/maximum elements are: minInclusive and maxInclusive, whose value is set to the minimum or maximum value, and that value is included in the restriction (in other words, still considered valid). In the above case, the minInclusive value includes 0, so you can have a coupon that is valid at a table with zero guests (this might mean that it applies to carry-out or delivery orders). To make 1 the minimum, and require that the coupon’s value be greater than 1, you use minExclusive (the opposite end being maxExclusive). Zero is then excluded from the restriction.

Moving on to body, it seems like we need to make the text element a global definition. However, what do we do to address the attributes that are defined for one context, and forbidden under another? Unfortunately, the specification states that if you use a reference to a global declaration of an element, you may not write a new complexType or simpleType or add to it. In this case it is easier to just define text twice.

	...

 <element name="body">

 <complexType>

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element name="text">

 <complexType>

 <simpleContent>

 <extension base="xsd:string">

(Continued)

 <attribute name="type">

 <simpleType>

 <restriction base="xsd:string">

 <enumeration value="header" />

 <enumeration value="regular" />

 </restriction>

 </simpleType>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

...

This is a fairly tricky definition. You will notice we are finally using the simpleContent element. This allows us to define extensions on the content of the element. Why is it necessary to extend the content? Because in XML Schema, oddly enough, an attribute is treated as part of the content of an element. The default for xsd:string is the element containing text, without any attributes set. We add the type attribute as an extension to the content. The base type of the extension defines the content of the text element, which is string. The base type of the restriction on the type attribute defines the content of the attribute’s values, which are strings. Then, the value is restricted to two valid options, header and regular.
After a mess like that, the terms element definition should be easy to understand: Two simple strings.

	...

 <element name="terms">

 <complexType>

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element name="boiler" maxOccurs="unbounded">

 <complexType>

 <attribute name="code" type="xsd:string" />

 </complexType>

 </element>

 <element name="text" type="xsd:string" />

 </sequence>

 </complexType>

 </element>

...

As I mentioned earlier, Fred may want to set a limit on coupon values to $50. He also wants to ensure that dollar amounts for both value and requirement dollars are not negative. You could modify both types individually, but instead you should define a global type definition:

	<schema xmlns="http://www.w3.org/2001/XMLSchema">

<simpleType name="dollars">

 <restriction base="xsd:decimal">

 <fractionDigits value="2" />

 <minInclusive value="0" />

 </restriction>

 </simpleType>

...

Then you remove the simpleTypes from the page and replace it with type="dollars".

	 <attribute name="dollars" use="optional" type="dollars" />

Next, we add a restriction that the maximum value is $50 on the value of a coupon.

	 <element name="value" minOccurs="1" maxOccurs="1">

...

 <simpleType>

 <restriction base="dollars">

 <maxInclusive value="50" />

 </restriction>

 </simpleType>

 </element>

The base is the type we start with, which is now our own derived dollars type. Then you restrict it as you have always restricted the W3C standard types.

Now that we have our Schema set up, it is time to validate it. You first need to add xsd: to all the elements and set up the namespace to apply to that prefix. I use search and replace to do this (and save a clean copy if you need to make changes). Be careful not to blindly replace < with <xsd: because the end tags need to have their forward slash before the prefix. There is a W3C validator for XML Schema, and it is located at <http://www.w3.org/2001/03/webdata/xsv>. The catch is that this one does not allow direct text input, so you must save and upload your Schema file. The error messages you get can be very confusing, so read them carefully. A common mistake is using an element in a location where it is not allowed, and the validator will tell you what elements are allowed to appear in that context.
The W3C validator does not validate your XML document, it only validates your Schema syntax. You should also use a validator that will test your known-to-be-good document against your Schema. You can also intentionally put mistakes in your document to see if it catches them. One good validator is at <http://www.xmlme.com/Validator.aspx>.
The final product is too large to include in the text, so you can view the file at <http://xmlbook.info/couponwithxsd.xml>. As you may have noticed, the attributes are not given prefixes. The W3C documentation did not use prefixes on attributes, and the validator accepted the unqualified attributes without a hitch. Don’t worry about prefixing attributes, but doing so won’t hurt you.
7.4 Chapter Review & Exercises

In this chapter, you have seen the syntax for the XML DTD, which is based on the SGML DTD. You should be able to define entities (both parameter and character), elements, and attributes, and define the allowed relationships between elements. You should know the syntax for zero-to-many, one-to-many, and optional elements. You should also understand XML Schema, and know what a simpleType or complexType can do, as well as the difference between extensions and restrictions. You should also know how to define an annotation, and why this mechanism is necessary in XML Schema.
1.

Develop a Document Type Definition for your computer lab XML vocabulary.

2.

Develop a Document Type Definition for Fred’s menu XML vocabulary.

3.

Develop an XML Schema for your computer lab XML vocabulary.

4.

Develop an XML Schema for Fred’s menu XML vocabulary.

8.1 CSS

Now that you have your XML documents, you are probably anxious to develop visual formatting rules, so your document can be viewed in a browser in a manner you define, rather than just seeing source code. You are in luck, because there are not one but two standards for visual presentation. The simpler one is Cascading Style Sheets (CSS). Cascading Style Sheets are widely used on webpages to format fonts, background colors, table column widths, and that sort of thing. The use of CSS varies slightly between HTML (and XHTML) and XML, so I will cover both applications of CSS. For the most part, the syntax is the same between the two.
CSS is another W3C standard, and it was created to make the visual appearance of web pages more consistent and easier to customize. For example, before CSS, it was common to decrease the font size of capital letters to create a “small caps” effect on webpages. CSS has a small-caps keyword that accomplishes the same effect automatically. There are also many tricks you can do with CSS that you could not do with plain HTML; for example, if you are viewing the online version of the book in a browser other than Internet Explorer 6 or below, you will see the navigation menu fixed in the top-left corner of the window. This is called fixed positioning, and is an example of a place where Internet Explorer 6 deviates from the CSS recommendation. (Internet Explorer 7 displays the fixed menu properly.)
There are two things you really need to know about CSS; the rest is just syntax that you can look up in the specification (I am using CSS2.1 <http://www.w3.org/TR/CSS21/> and CSS2 <http://www.w3.org/TR/REC-CSS2/>, but the CSS1 recommendation <http://www.w3.org/TR/REC-CSS1> is all in one page and easier to follow). A Cascading Style Sheet is made up of rules, and those rules are defined by selectors and properties. A selector is a string that defines where this rule applies. For example, if you want a rule to apply to all b elements in an XHTML document, you would make b your selector. Section 8.2 will cover selectors. A property is an instruction to display the content affected by the selector in a certain way, and that is covered in section 8.3. Here is a quick and dirty example, which shows what your web browser does with b elements using its default stylesheet:
	b {

 font-weight: bold;

}

The selector is just the element b. All properties are listed inside the curly braces, with the name of the property first, then a colon, then the property’s value, then a semicolon. This one sets the font-weight property to bold. This may raise the question, why would someone need a stylesheet to define that b elements should display in bold? Well, HTML just happens to have another element, strong, which defines strong emphasis. Most browsers display the strong element in bold. However, an author might decide he would like for his strong elements to be displayed in a big, red font with a yellow border. He can override the strong element’s meaning in the browser’s default stylesheet with his own:

	strong {

 color: red;

 font-size: 2em;

 border: 1px solid yellow;

}

This rule would change all the strong elements to red, double-size font, with a 1 pixel solid yellow border. The font would, however, still be bold; any existing properties are inherited at lower levels unless the lower level specifically resets them. For example, if you have an i (italics) element within the strong element, the contents of the i element do not appear in the default font, without any border. The italic property is set on the i element’s contents in addition to other properties that would be set if the text were in the parent element. The same is true for stylesheets being set on top of existing stylesheets. The browser will first apply the default stylesheet, then any stylesheets that are linked from the document, then any stylesheets embedded directly in the document, then any style attributes set directly on elements (the last two can only be done in HTML). A lower-level stylesheet can reset or unset any property that is set at a higher level. There is an exception to this: The ! important rule can be added to any property to tell the browser that this rule is important, and cannot be unset by any lower-level rule, unless, of course, that lower-level property is also important. This is often used by viewers with visual impairments; in their browser’s default stylesheet, they set an important rule to set all font sizes to a certain point size they can see clearly. For that reason, use the important rule sparingly.

8.2 Selectors
Selectors are used to select the space where a rule will apply. The simplest selector, as seen above, is simply the element name. One handy feature of CSS selectors is that you can group several of them in one rule, delimited with commas. The below example applies to the elements b and strong, but either of those could be a more complicated selector, which I will cover in a moment.
	b, strong {

 font-weight: bold;

}

You can also define selectors as appearing when one element is a child or a descendent of another. To define a selector in a case where element d is a descendant of element a, you simply define it like so:

	a d { }

Any properties you define in this rule will apply to the d elements that are descendants (children, grandchildren, etc.) and only those d elements. If you want to limit the rule to children, you add a greater-than sign. The next example matches c elements when c is a child of p:

	p > c { }

One way to help remember this syntax is to remember that parents are older than, bigger than, and smarter than children (at least usually so). Or, if your problem is that you can never remember which way the arrow points for greater than, just remember that two parents make each child, and there are two points on the parent side.

Would you believe me if I told you that CSS even has a syntax for the first born child (well, first child, anyway)? Well, it does. This is the first example of a pseudo-class, which is a selector that applies under special circumstances. The name of a pseudo-class comes after a colon in all cases.

	c:first-child { }

This rule applies to any element c that is the first child of its parent. It can be any parent element, though. If you want to ensure that it only applies when c is the first child of p, combine the two selectors like this:

	p > c:first-child { }

You can use pseudo-classes to apply rules in certain situations that can change dynamically. The most popular (and in some cases, most overused) is the :hover pseudo-class, which applies when a mouse cursor hovers over the selected area. :focus applies to an item that has focus (applies to keyboard navigation and form controls). There are also pseudo-classes for the three types of links in HTML. For a link that has not been visited, use a:link, for a visited link, use a:visited, and for an active link, use a:active. (:active applies to any element that is activated, but only hyperlinks seem to use it.)

You can select an element b only when it is immediately preceded by an element a:

	a + b { }

You can select an element e where attribute a is set to value:

	e[a="value"] { }

Or you can select by an element’s ID, or identifier. Recall that an identifier is defined uniquely for one instance of an element. You would not select by ID as if it is an attribute like the above example. Select by ID using this syntax:

	e#abc { } /* element e with ID abc */

#abc { } /* ID abc, does not have to be an e element */

Note the comments; in CSS, you use C-style comments. However CSS does not allow line-doc (two forward slashes). You may try it and find that the browser you test in supports it, but it is not supported by all browsers because it is not in the CSS recommendation.
You use a number-sign to select by ID. The first example will only match an element with the ID abc if it appears on an e element. The second will match regardless of what element abc is.
Classes are groups of elements, or specifically, instances of elements, that are related in some way. Classes are often used in HTML to make some div elements have one set of properties, and other div elements have another. In HTML, a class is defined using the attribute class="classname". You could use the attribute selector from above, but in HTML only, you can use this shorthand instead:
	e.classname { } /* Only applies to element e */

.classname { } /* Applies to all elements in class */

The first example combines an element with the class name. Many WYSIWYG HTML editors do this, and I will never understand why. It can be very confusing to define a class, and then have it only apply to one element that has that class.

What if you want to use classes in XML? The CSS2 Recommendation forbids this shorthand outside of HTML/XHTML, so the only way you can use classes in XML is to use an attribute selector. However, attribute selectors cannot just be left hanging like this:

	BAD EXAMPLE

[class="classname"] { }

There is a solution, and it is more intuitive than you might think. This works anywhere where you would like to represent “all” elements: Just use the good old * as a wildcard.

	*[class="classname"] { }

This will select all elements in that class in your XML document. (It works in HTML and XHTML, too, but why use a more complicated syntax? Just use the shorthand.)

These selectors are all you should ever need on a regular basis. However, if you want to have fun, go to the W3C site and look up the pseudo-elements :first-line, :first-letter, :before, and :after. They do what you might think they do—they select part of an element.
8.3 Properties

The properties are mostly intuitive, and there are many great references that can be consulted when you want find a property for the style you are looking for. One of my favorites is to type in “CSS” and the effect I am looking for at the moment into Google. I will cover a few basic things that we will need to style Fred’s coupon documents.
One of the main considerations for how an item is drawn is whether it is displayed as block or inline. You might remember from HTML that p and div are block-level containers and span is an inline container. These, too, are defined by the default stylesheet in your browser. This is how it might appear:
	p, div {

 display: block;

}

span {

 display: inline;

}

The display property can be block or inline. Inline display flows with the surrounding text, block is set apart on its own. For most of your XML elements, you will want block display, but there is always the occasional exception. You can also set the display property to none if there is an item you do not want displayed at all.
The position property allows you to choose how a block element is displayed. It does not apply to inline elements.

	 position: static;

 position: relative;

 position: absolute;

 position: fixed;

These four positioning schemes each mean something different. Static positioning is the positioning of an element in the normal document flow (top to bottom, left to right). This is obviously the default, and basically instructs the browser to display this element immediately after it has displayed the previous element and immediately before the next. This will change depending on the browser size and other factors, so you cannot assign it top, bottom, left, and right properties. (More on this in a moment.)

Relative positioning begins by positioning the item as if it was static, then it takes a knife and cuts your block out of the document and moves it up, down, left, or right from its original location. For example, top: -20px; moves the whole block up 20 pixels. The following element stays where it was before, leaving a blank space where the original block was cut out. Of the four, I understand the point of this one the least. If any of you readers find this necessary in real life, please tell me about it.
Absolute positioning completely disregards the flow of the document, and places your block wherever you specify with top/bottom/left/right. It is then affixed there on the finished document and scrolls with the page.

Fixed positioning is like absolute positioning, but instead of placing your block in the document, it sticks it to the viewport (the monitor of the viewer) at a fixed location, and does not scroll with the document. If you are using a browser that properly displays fixed positioning, you should notice this effect on the sidebar of this book.
Now, the elements top/bottom/left/right define where the element is displayed relative to the frame of reference (the document for absolute, the viewport for fixed). You should not set top and bottom, or left and right parameters both at the same time. The idea is that if you want something in the top-left corner, you would set top and left to 0px, and if you want something in the bottom-right corner, you would set bottom and right to 0px.

This is an example for how I styled the sidebar on the online version of this book:

	#sidebar {

 position: fixed;

 top: 2px;

 left: 2px;

}

The sidebar is fixed to the viewport 2 pixels from the top and bottom. You could use negative measurements, and then the sidebar would be cut off at the edge of the viewport. The important thing is that in CSS, all measurements must include units. You cannot just set the top property to 2 and leave it at that. The reason you must include units is because CSS supports pixels, inches, centimeters, percentages, and numerous other units. You must include the abbreviation px for pixels (or in, cm, or %).

The same applies to height and width, which may be set to a measurement or a percentage.

	 height: 100px;

 width: 200px;

The color property takes several measurements of color, and applies it to the content (often this sets the font color). I intentionally did not discuss HTML color, because HTML color can be needlessly complicated. In CSS, you may give simple color names (red, green, purple, gray, black, white) or specify colors numerically. Here are five different ways to specify the color red:

	 color: red;

 color: #f00; /* #RGB */

 color: #ff0000; /* #RRGGBB */

 color: rgb(255,0,0);

 color: rgb(100%, 0%, 0%);

The first is the simplest way to define the color red, but is not an option for more obscure colors (such as terra cotta red). The second syntax is fairly confusing, and I would suggest you avoid it. The third is an HTML-style hexadecimal color code, which starts at 00 and goes up to FF for each of red, green, and blue. If you’re comfortable with hexadecimal, this syntax is the same that was used in HTML before CSS came along and is more compact. The third is a decimal representation of the same thing: A range from 0-255 for each of red, green, and blue. The fourth is a percentage. I would suggest using a color picker from a graphics program, or using a color chart like the one at <http://html-color-codes.com/> instead of using a trial-and-error method. You can also set the background color with the background-color property.
Font selection can be done in steps, but it is easiest to use the catch-all font property, which allows you to set all the font options you want in one step. You can look up the individual property names if you only want to change one of them—anything not specified in a font property is set to default, and you may want to inherit font properties on occasion.

	 font: bold italic 24pt Arial, Helvetica, sans-serif;

 font: 2em "Courier New";

First, note the quote marks. You must place quote marks around any font name that contains spaces. This applies to any situation where your value might contain spaces; your stylesheet becomes ambiguous when these spaces are found outside quote marks, and the browser discards the whole thing.

The commas indicate a chain of fonts. The first font will be chosen; if it is unavailable, the parser chooses the next font. In the first example, the browser will check for the Arial font, and if it is unavailable, the browser checks for Helvetica, and if that is unavailable, the browser chooses a generic sans-serif font. The generic fonts in CSS are serif, sans-serif, cursive, fantasy, and monospace.

This property demonstrates two of other units in CSS: points and ems. Point sizes are problematic, because they are actually the same as inches (1 point = 1/72nd of an inch). Inch sizes can vary depending on the dots-per-inch of displays, so use pixel sizes or relative sizes.

An em is a relative size, basically defined as the height of one letter “m.” That information is important if you are using ems for width or height, but for text, you are basically making the height of the letter m a multiple of the default height of the letter m. The default font size is 1em, and 2em would be double font size. Be careful with ems, though! Always remember that it is a font size. If you define the font size for the body element in an HTML document as 2em, and then define the size of an h1 element as 10em, your actual h1 font size will be 20 times the default size, because the default size of the h1 font is inherited from body.
An important thing to note is you cannot set color on a font property; you use color for that.

You can also draw borders on any element. This is another catch-all property. This one does accept colors.

	 border: 2px solid red;

 border: 1px dashed;

 border: none;

The first rule sets a 2 pixel wide border around the box, the border is solid, and red in color. The second sets a 1 pixel wide border and it is dashed, and the color is default (probably black). The third specifies no border at all.

Last but not least, there is the content property. This is a good one to use for XML documents, because it allows you to display labels and attributes that otherwise would not be displayed. There is a small (big) catch-22 with this property, though: it is not supported by any version of Internet Explorer up through 7. As a result, your document may be styled differently in IE, and specifically, the labels in your content properties will be gone. However, if you are willing to accept that, and expect most viewers of the XML document to be using Firefox, this can be a handy property. You may only use the content property in :before and :after pseudo-elements.
	name:before {

 content: "Hello ";

}

This will appear in Firefox as “Hello ” followed by the content of name. What if name has an attribute prefix with values like Mr. and Mrs.? You can chain strings with values of attributes, like so:

	Name[prefix]:before {

 content: "Hello " attr(prefix) " ";

}

This will say “Hello Mr. ” name or “Hello Mrs. ” name. This can be useful for styling XML documents, but since it doesn’t work in IE, don’t get too attached to it. There is a better solution coming up next chapter that works in both browsers.

There are many other selectors, so be sure to look them up when you find them.

8.4 CSS Linking
For both HTML and XML, you can link to an external CSS file, and this is the best way to style a document. I will cover the HTML styling methods first, because they are the only ones that will work for HTML/XHTML in most browsers.
In HTML, you can use an external stylesheet by using the link element:

	<link rel="stylesheet" type="text/css" href="styles.css" />

You can also embed the stylesheet directly in the document (this is an internal stylesheet):

	<style type="text/css">
...

</style>

If you are in a hurry and just want to set a style on one element, you can set a style right on the element (although these element stylesheets can be hard to revise later and I would not recommend their use):

	<div style="background-color: blue;">

Blue background here

</div>

In XML, you use the xml-stylesheet tag (which is another kind of processing instruction):

	<?xml-stylesheet type="text/css" href="styles.css"?>

You could do this for an XHTML document, but if you send the webpage as text/html the browser will ignore it.

As an example, I have designed a full stylesheet for Fred’s coupon vocabulary. It should be fairly simple to understand if you look carefully at the selectors and properties. You can view the styled document at <http://xmlbook.info/couponcss.xml>.
Before we look at the stylesheet, I’ll make one brief explanation of something you will see. When you have a long line, you can break it off onto a new line. However, the CSS parser treats new lines as the end of a property value. To prevent this from happening, place a \ character at the end of the line and it will be treated by the CSS parser as if there was no new line there.

	coupon {

margin: 5px;

display: block;

border: 1px solid black;

background-color: white;

color: black;

}

serial-number {

display: block;

font: 1em "Courier New";

}

(Continued)

valid-at:before {

font: 1.5em italic "Times New Roman";

content: "Valid at: ";

}

valid-at {

display: block;

background-color: yellow;

margin: 5px;

text-align: center;

background-color: yellow;

font: 1em bold Arial, sans-serif;

}

valid-at location {

display: inline;

}

deal {

display: block;

background-color: lightcyan;

font: 1em Verdana;

}

deal location:before {

content: "Location: ";

font-weight: normal; /* Otherwise inherits bold from element */

}

deal location {

font-weight: bold;

}

deal value:before {

content: "Value: ";

}

deal value {

color: darkgreen;

}

requirement:before {

content: "Required: " attr(guests) " Guests " \

attr(dollars) " Dollars ";

}

body {

display: block;

font: Arial;

}

body text[type="header"] {

display: block;

font-size: 2em;

font-color: blue;

}

body text[type="regular"] {

display: block;

}

terms {

display: block;

font: .7em "Courier New", monospace;

}

boiler:before {

content: "Boilerplate text: " attr(code);

}

boiler {

display: inline;

}

(Continued)

terms text {

display: block;

}

One thing you may notice is that in the absence of either the guests or dollars attribute on the requirement element, you will still see the word “Guests” or “Dollars” after it. I could have redefined this rule for all four combinations of these two optional elements, but since this is already a horribly inelegant solution to the problem, I left it alone. We will be making a much better stylesheet using XSLT in the next chapter, so this should be viewed as a temporary solution. Of course, in the case of webpages, CSS is the de facto standard, and it works well in the final phase of a document (when no more transforming or content manipulation is necessary). If you are using XSLT to publish on the web in HTML or XHTML, your final document should still include a Cascading Style Sheet for proper display in a browser. I’ve only scratched the surface of CSS, but if you want to learn more, there are many websites and books available that will go into more detail than you ever wanted to know about CSS.
8.5 Chapter Review & Exercises
At the end of this chapter, you should know how to define a rule in CSS. You should have a basic understanding of selectors and properties that you can use to control the appearance of a document. You should know what pseudo-classes and pseudo-elements do, as well as classes in HTML. You should know the difference between block and inline display. You should understand relative, absolute, and fixed positioning. You should know what the units of measurement are in CSS, and when to use them. Finally, you should know how to link your CSS file into your HTML or XML document.
1.

Create a CSS for your XHTML webpage. Find a use for all of the selectors and properties you learned in the chapter. Use examples of external, internal, and element stylesheets.

2.

Create a CSS for your computer lab XML vocabulary. Make sure that, at least in Firefox, all of the information is conveyed either by iconography (colors, borders, positioning) or with labels.

3.

Create a CSS for Fred’s menu XML vocabulary. Make sure that, at least in Firefox, all of the information is conveyed either by iconography (colors, borders, positioning) or with labels.
9.1 XSL and XSLT

You have discovered the weakness of using CSS to style an XML document: CSS does not allow you to transform your document. Elements must remain in the order they appear, and the settings on attributes are not displayed. There is no real decision-making power in CSS, so you cannot decide how something should appear based on information about that element or attribute (beyond what selectors can do). To address this issue, W3C came up with yet another pair of recommendations: Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT). XSL is the general family of XML Styling vocabularies from the W3C, of which there are currently three: XSLT, XSL Formatting Objects (XSL-FO), and XML Path (XPath).
XSL Formatting Objects is an alternative to CSS that is used mainly in the printing business, and offers the same basic functionality. You can use XSL Formatting Objects if you would like, but since CSS is much simpler and more clearly documented, and also better supported by browsers, you would be better off using CSS than XSL-FO.
XPath is a method to select a given element or attribute in the XML hierarchy. The syntax can be very complicated, or very simple. The basic syntax will be covered in this chapter, but you can form very complicated expressions to select a specific node (instance of an element) in the document.
All of these standards are accessible from the W3C recommendation <http://www.w3.org/TR/xsl/> or on websites and books.

XSLT is a simple, reasonably easy to understand XML vocabulary for the transformation of documents from one format to another. You can use XSLT to convert from one XML vocabulary to a different XML vocabulary, or to HTML, text files, or virtually any text file format.
9.2 Structure

To begin, you have an XML document that needs to be transformed. We won’t be using the coupon vocabulary; that one will be yours to transform. For the examples here, a more database-like vocabulary will be used, to demonstrate how well XSLT handles such a vocabulary.

	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<?xml-stylesheet href="people.xsl" type="text/xsl"?>

<people>

 <list-name>Favorite Colors</list-name>

 <person>

 <name>

 <first>Bob</first>

 <last>Toddson</last>

 </name>

 <acct-no>327598</acct-no>

 <fav-color hex="#ff0000">Red</fav-color>

 </person>

 <person>

 <name>

 <first>Red</first>

 <last>McBlue</last>

(Continued)

 </name>

 <acct-no>209890</acct-no>

 <fav-color hex="#00ff00">Green</fav-color>

 </person>

 <person>

 <name>

 <first>Tammy</first>

 <last>Yu</last>

 </name>

 <acct-no>978541</acct-no>

 <fav-color hex="#7fff00">Chartreuse</fav-color>

 </person>

 <person>

 <name>

 <first>Phillip</first>

 <last>Cardwell</last>

 </name>

 <acct-no>258929</acct-no>

 <fav-color hex="#d2b48c">Tan</fav-color>
 </person>

</people>

Note the stylesheet tag; this time, the text/xsl MIME type is used. This MIME type is technically incorrect, because the IETF has to register a MIME type before it can be used, and no type is registered for XSL yet. However, text/xsl is the only MIME type recognized by both browsers, and will remain so until an official MIME type is registered.
How would one style this? It would certainly look unpleasant if you tried to style this with CSS. Instead, use XSL. To begin, start with the root element, which for XSL is stylesheet.

Much like XML Schema, you are expected to use the proper namespace for your XSLT document. For these examples I will use prefixes, because not only are they necessary, they can also help you find the XSL tags while writing your own stylesheet.

	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

Also, every XSLT document needs to have an output method; XSLT can output HTML, XML, and text. For the first example, we will output HTML. (Use XML when outputting XHTML.)

	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" />
</xsl:stylesheet>

Next, you define templates, which are rules that are applied to elements. These are similar to rules in CSS, but remember that XSLT is used for transformation, not styling. You will often want to define a rule for the root (of the document, not the root element), which gives you the ability to add text to the beginning and end of the output. The pattern (which is a synonym of selector and means an XPath expression) for the root is /.

	...

<xsl:output method="html" />

<xsl:template match="/">

 <html>

 <head>

 <title>People Report: <xsl:value-of select="/people/list-name" />
 </title>

 </head>

 <body>

 <center>
 <h1>People Report: <xsl:value-of select="/people/list-name" />
 </h1>
 </center>

 <table border="1" align="center">

 <tr>

 <td>Last Name</td>

 <td>First Name</td>

 <td>Account Number</td>

 <td>Favorite Color</td>

 </tr>

 <xsl:apply-templates select="/people/person" />
 </table>

 </body>

 </html>

</xsl:template>

...

Let’s review the new XSLT elements before moving on to the template for the person element. The contents of a template are displayed in place of the element in the match pattern, so in this case, the contents are displayed at the root level, below any elements (even the root element).
The value-of element simply inserts the contents of a selected element. This is a more complicated pattern; this one is read from left to right as, “A list-name that is a child of a people that is a child of the root.” In XPath, forward slashes are used to navigate through the XML tree structure, much like the file system on a hard disk.
The apply-templates element is sort of like a GOTO instruction for the XSLT processor; it will tell the processor to insert the specified elements here. Any elements that you do not include in an apply-templates rule will simply not appear. The behavior for XSLT is different from CSS, where you had to hide elements you did not want to appear. In this case, there is a table defined in the main body of the document, and in the template for each person element a table row will be inserted.

The template for the person element is then placed after the root template:

	...

<xsl:template match="person">

 <tr>

 <td>

 <xsl:value-of select="name/last" />
 </td>
 <td>

 <xsl:value-of select="name/first" />

 </td>

 <td>
 <xsl:value-of select="acct-no" />

 </td>

(Continued)

 <td>

 <xsl:value-of select="fav-color" />

 </td>

 </tr>
</xsl:template>

</xsl:stylesheet>

Note that these elements do not reference the root. Instead, they are relative XPath expressions that are based on the context of their location. The context is the starting point for XPath expressions that do not reference the root. In this case, the context is the person element that is currently being looked at. If you view the current XML file in an XSLT-capable browser, you will now see this:
	People Report: Favorite Colors
Last Name

First Name

Account Number

Favorite Color

Toddson

Bob

327598

Red

McBlue

Red

209890

Green

Yu

Tammy

978541

Chartreuse

Cardwell

Phillip

258929

Tan

XSL is already proving to be much more useful than CSS. We have transformed an XML file to an HTML document that is clear and easy to read. However, let’s say that we want to make the background color of the table cells match the person’s favorite color, using the hex attribute. Can XPath select the value of attributes? The answer is yes! But, you cannot embed one tag within another, so we need an alternative way to copy the value into a style attribute. This is where the variable element comes in.
	...

 <td>

 <xsl:value-of select="acct-no" />

 </td>

 <xsl:variable name="hexcolor">

 <xsl:value-of select="fav-color/@hex" />

 </xsl:variable>

 <td style="background-color: {$hexcolor};">

 <xsl:value-of select="fav-color" />

 </td>

...

The variable element copies the contents, which in this case are the output from a value-of element, into the variable hexcolor. The variable is then pasted in wherever it sees the variable name preceded by a $ (and it must also be enclosed in curly braces {} when used in output text, as with the style attribute). Now the colors are easier to recognize:

	People Report: Favorite Colors
Last Name

First Name

Account Number

Favorite Color

Toddson

Bob

327598

Red

McBlue

Red

209890

Green

Yu

Tammy

978541

Chartreuse

Cardwell

Phillip

258929

Tan

There is only one problem remaining. The names are not sorted in the XML file, and so they appear in the same order. You can make the names appear more organized by sorting them on the last name. To do this, use the handy sort element:

	...

 <xsl:apply-templates select="/people/person">

 <xsl:sort select="name/last" />

 <xsl:sort select="name/first" />

 </xsl:apply-templates>

...

Note that sort is a child of apply-templates, which was before a self-closing tag. This alone is enough to sort by last name, and by first name if there are people with the same last name (you can modify the XML to test this). The select attribute is used to define what content to use as the key for sorting. You can be more specific, and have more complicated sorting commands. For example, when sorting numbers, specify data-type="number" to prevent 10 from coming after 1 and before 20. To sort in descending key order, specify order="descending". The defaults for those two are text and ascending.
Using XSLT to convert your XML document to HTML makes it easier to manage data that is presented on the web. However, not all browsers are XSL capable yet (although it’s close). There are numerous server-side scripts that will process XSL for you on the server side so the visitor’s browser is not required to do so.

9.3 Other XSL Applications

XSLT can be used for other file formats besides HTML. XML to XML conversion using XSLT is one of the most powerful uses of XSLT; this makes any XML vocabulary transformable into any other XML vocabulary. For example, say you have a vocabulary for a phone book, and a document looks like this:

	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<phonebook>

 <name phone="3258908">Simmons, Mary</name>

 <name phone="2098359">Stimson, Greg</name>

</phonebook>

It is simple to convert our people vocabulary to this phonebook vocabulary, using a simple stylesheet. We’ll say that numbers are optional and leave them off for now. Note the output method: it is now xml.
	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" />

<xsl:template match="/">

 <phonebook>

 <xsl:apply-templates select="/people/person">

 <xsl:sort select="name/last" />

 <xsl:sort select="name/first" />

 </xsl:apply-templates>

 </phonebook>

</xsl:template>

<xsl:template match="person">

 <name>

 <xsl:value-of select="name/last" />, <xsl:value-of select="name/first" />

 </name>

</xsl:template>

</xsl:stylesheet>

The only problem with this is that by transforming from one XML document to another, you are overriding the default XSL stylesheet that your browser uses to pretty-print the source code of your XML document. As a result, your web browser will only display this:

Cardwell, PhillipMcBlue, RedToddson, BobYu, Tammy
The solution is to use an XSL preprocessor. The one I used in testing was a very nice one being developed in JavaScript using AJAX by Google, available at
<http://goog-ajaxslt.sourceforge.net/>. The output isn’t pretty when it comes out, but once you organize it, it looks like this:
	<phonebook>

 <name>Cardwell, Phillip</name>

 <name>McBlue, Red</name>

 <name>Toddson, Bob</name>

 <name>Yu, Tammy</name>

</phonebook>

This can then be copied into a file (you will need to add your own XML declaration to the top) and loaded using a parser for the phonebook vocabulary. This is a simple example, but the possibilities are literally endless.

Likewise, you can convert the data in the people document into a comma-separated values (CSV) file for use in a spreadsheet. However, the tricky thing is, any spaces or newlines you use to indent your code will be interpreted as character data that is sent to output (in most places). To prevent formatting errors, you have to sacrifice a bit of readability in your XSL code. I will first show you the pretty version (note the text output method):
	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text" />

 <xsl:template match="/">

 Last Name,First Name,Account Number,Favorite Color<xsl:text>

</xsl:text><xsl:apply-templates select="/people/person">

 <xsl:sort select="name/last" />

 <xsl:sort select="name/first" />

 </xsl:apply-templates>

 </xsl:template>

 <xsl:template match="person">

 <xsl:value-of select="name/last" />,<xsl:value-of select="name/first" />,<xsl:value-of select="acct-no" />,<xsl:value-of select="fav-color" /><xsl:text>

 </xsl:text>

</xsl:template>

</xsl:stylesheet>

With the indentation and extra lines, the output will be mangled and unreadable by spreadsheet programs:

	 Last Name,First Name,Account Number,Favorite Color

 Cardwell,Phillip,258929,Tan

 McBlue,Red,209890,Green

 Toddson,Bob,327598,Red

 Yu,Tammy,978541,Chartreuse

Note the extra lines on top and bottom. This will not render correctly in a spreadsheet program. To correct the problem, remove all of the spaces and newline characters within templates EXCEPT the ones contained in xsl:text elements. The text element is an instruction to the XSL processor to preserve all character data contained within it; so in this case a new line will be preserved between every record in the spreadsheet. If you did not use text, you would find that all of your persons were combined into one long record. Once you modify your document to remove all indentation and newlines with that one exception, you will have a document that looks like this in the first screenful:

	<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transf...

<xsl:output method="text" />

<xsl:template match="/">Last Name,First Name,Account Number,Favorite Color...

</xsl:text><xsl:apply-templates select="/people/person"><xsl:sort select="...

<xsl:template match="person"><xsl:value-of select="name/last" />,<xsl:valu...

</xsl:text></xsl:template>

</xsl:stylesheet>

The output from this stylesheet is now correct:

	Last Name,First Name,Account Number,Favorite Color

Cardwell,Phillip,258929,Tan

McBlue,Red,209890,Green

Toddson,Bob,327598,Red

Yu,Tammy,978541,Chartreuse

This data can be loaded into your favorite spreadsheet program now. Of course, it isn’t nearly as easy to convert this data back into XML. This is another benefit of XML: While it may not be easy to convert other formats into different file types, XML can be easily converted into any type of file imaginable. It is even possible, though complicated, to create Acrobat PDF files from XML using XSL. Most of you will see the most benefit from HTML or XHTML.

9.4 Chapter Review & Exercises
You should now know how to create XSLT stylesheets to convert an XML document into HTML, XML, or text formats. You should know how to sort output and modify attributes in HTML tags using XML data. You should also know how to use basic XPath to select elements, children, and attributes.

1.

Transform the coupon XML vocabulary into HTML or XHTML using XSLT. Use CSS on the output as desired.
2.

Create an XSLT stylesheet for your computer lab XML vocabulary. Convert all the information into HTML or XHTML and convert whatever information makes sense to a spreadsheet into a CSV file.

10.1 XML Applications

There are many other applications of XML beyond what has been covered here. I will briefly introduce you to a few, so you can be familiar with them and decide if you would like to learn them. This will conclude this book of XML and hopefully open another for you.

One that I have been mentioning throughout the book is AJAX. AJAX stands for Asynchronous JavaScript And XML. It is basically the combination of DHTML (Dynamic HTML, which itself is the combination of JavaScript, CSS, and the DOM) and XML using the XMLHttpRequest object in JavaScript. The XMLHttpRequest object is basically a tiny little web browser that transmits data to, and requests an XML document from the web server. You then parse that XML in your JavaScript and display it on the same page, allowing new information to be displayed without loading a new page. Effective use of AJAX requires knowledge of server-side scripting languages, JavaScript, and the Document Object Model, each of which is a book by itself; therefore I could not cover it here. However, AJAX is one of the most wanted features in new web applications because it provides instant feedback rather than the historic page-by-page model of web browsing. The Mozilla developer site <http://developer.mozilla.org/en/docs/AJAX:Getting_Started> has a great, brief tutorial on AJAX.
The Scalable Vector Graphics vocabulary has been used in examples in this book. It is a W3C recommendation for the creation of, for lack of a better way to explain it, scalable vector graphics. Vector graphics are graphics that are defined not in pixels, but as shapes and polygons that are filled with color or painted with bitmap graphics (those are the kind of graphics that have pixels). Since these graphics are made up with infinitely complex shapes, you can increase the size without ever noticing pixelization (where each pixel appears to be a square of one color, giving the image a jagged look). You can pick up SVG fairly quickly just by reading the W3C recommendation <http://www.w3.org/TR/SVG/>; it is one of the more clearly written W3C standards.
MathML (Mathematical Markup Language) is used to display mathematic expressions, ideally on the web, the way they were meant to appear. If you have ever tried to enter something even so simple as the addition of two fractions into the computer, you have surely noticed that it is not a visually appealing task. Often we just try to fit the entire expression on one line of text. MathML allows us to divide the expression into parts, such as the expression in the dividend and the expression in the divisor of the fraction, and then puts them together into a pretty equation. You can learn MathML from the W3C site <http://www.w3.org/TR/MathML/>.
The last one is a kind of neat XML vocabulary to end the book on. This is a great example of an innovative use of XML. Andreas Saremba, presumably a chess fan, designed an XML vocabulary to represent the players and moves in a chess game and called it ChessGML (Chess Game Markup Language). Things got even more interesting when Max Froumentin, a W3C member, showed off XSLT and SVG’s powers by producing an animated SVG image to recreate the game, step-by-step, from a ChessGML XML file. You can view the example and find out more about ChessGML at Max’s site <http://people.w3.org/maxf/ChessGML/>.
There is only one XML vocabulary that is more powerful than everything I’ve covered in this book. That is the XML vocabulary you create yourself. Only you can decide what elements you would like to use to contain your data. By clearly documenting your new XML vocabulary, you might even convince others to adopt your system! When using XML, you guarantee that any user, on any system, has the capability to process and use your data, which cannot be guaranteed for any closed, proprietary data format. This book should only be the beginning of your XML journey; hopefully by the time it ends, you will have made quite a few things more accessible and maintainable through Extensible Markup Language.

Appendix A References

Cover image: Helix Nebula picture courtesy of NASA, <http://www.nasa.gov/images/content/103884main_image_feature_241_jwfull.jpg>.

Chapter 2
Goldfarb, Charles, “A Brief History of the Development of SGML,” 11 June 1990, 26 Jan 2006 <http://xml.coverpages.org/foottLect08.html>.
Sperberg-McQueen and Burnard, “A Gentle Introduction to SGML,” 26 Jan 2006 <http://www.tei-c.org/Papers/gentleguide.pdf>.
Chapter 3

“HTML 4.01 Specification,” World Wide Web Consortium, 24 Dec 1999, <http://www.w3.org/TR/html401/>.

“Web Naming and Addressing,” W3C, 27 Feb 2006, <http://www.w3.org/Addressing/>.

Chapter 4

“Extensible Markup Language (XML) 1.1,” W3C, 15 Apr 2004, <http://www.w3.org/TR/xml11/>.
“Namespaces in XML 1.1,” W3C, 4 Feb 2004, <http://www.w3.org/TR/xml-names11/>.
“Scalable Vector Graphics (SVG) 1.1 Specification,” W3C, 14 Jan 2003, <http://www.w3.org/TR/SVG/>.

“What is Copyleft?” Free Software Foundation, 3 Jun 2005, <http://www.gnu.org/licenses/licenses.html>.

“Wireless Markup Language Specification Version 1.3,” Online Mobile Alliance, 19 Feb 2000, <http://www.openmobilealliance.org/tech/affiliates/wap/wap-191-wml-20000219-a.pdf>.

Chapter 5

“Introduction to Active Channel Technology,” Microsoft Developer Network, 16 Mar 2006 <http://msdn.microsoft.com/workshop/delivery/channel/overview/overview.asp>.
“Really Simple Syndication: RSS 2.0.1 Specification,” RSS Advisory Board, 25 Jan 2005, <http://www.rssboard.org/rss-specification>.

Chapter 6

“Document Object Model (DOM) Level 3 Core Specification,” W3C, 7 Apr 2004, <http://www.w3.org/TR/DOM-Level-3-Core/>.

“XHTML 1.1 – Module-based XHTML,” W3C, 31 May 2001, <http://www.w3.org/TR/xhtml11/>.

Chapter 7

“Extensible Markup Language (XML) 1.1,” W3C, 15 Apr 2004, <http://www.w3.org/TR/xml11/>.
“XML Schema Part 0: Primer Second Edition,” W3C, 28 Oct 2004, <http://www.w3.org/TR/xmlschema-0/>.

“XML Schema Part 1: Structures Second Edition,” W3C, 28 Oct 2004, <http://www.w3.org/TR/xmlschema-1/>.

“XML Schema Part 2: Datatypes Second Edition,” W3C, 28 Oct 2004, <http://www.w3.org/TR/xmlschema-2/>.

Chapter 8

“Cascading Style Sheets, level 1,” W3C, 11 Jan 1999, <http://www.w3.org/TR/REC-CSS1>.
“Cascading Style Sheets, Level 2,” W3C, 12 May 1998, <http://www.w3.org/TR/REC-CSS2/>.
“Cascading Style Sheets, Level 2 revision 1 CSS 2.1 Specification,” W3C, 13 June 2005, <http://www.w3.org/TR/CSS21/>.

Chapter 9

“Extensible Stylesheet Language,” W3C, 15 Oct 2001, <http://www.w3.org/TR/xsl/>.

“XSL Transformations,” W3C, 16 Nov 1999, <http://www.w3.org/TR/xslt>.

Chapter 10

“AJAX:Getting Started,” Mozilla Developer Center, 15 Mar 2006, <http://developer.mozilla.org/en/docs/AJAX:Getting_Started>.

Froumentin, Max, “ChessGML to SVG,” 10 Apr 2006 <http://people.w3.org/maxf/ChessGML/>.
“Mathematical Markup Language (MathML) Version 2.0,” W3C, 21 Oct 2003, <http://www.w3.org/TR/MathML/>.

“Scalable Vector Graphics (SVG) 1.1 Specification,” W3C, 14 Jan 2003, <http://www.w3.org/TR/SVG/>.

PAGE

